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Abstract

Buffer Overflow (BOF) ranked as the most dangerous vulnerability; its attacks become
more powerful and destroyable by remote code execution (RCE) of the Polymorphic
Shellcode. Shellcode acts as a weapon to perform BOF. It consists of three sections

that always transforms its parts to be Polymorphic Shellcode.

Solutions available from Intrusion Detection Systems (IDS) still depend on the
signature, so polymorphic and unknown Shellcodes could not be detected. There also
researches on this hot topic that adds techniques to prevent BOF like simulation, search
for the return address, and encrypt buffers. As a result of cyber criminal’s attempts and

efforts they bypassed these technologies.

We proposed a new solution using data mining classification technique; which can
classify the packets on the transport layer of the network as clean or buffer overflow

Shellcode attack. This solution can detect unseen Shellcodes.

We have generated a dataset for malicious consist of 500,000 files from Metasploit
engines and 72,000 files of a clean dataset from various types of data.

By applying different classification methods on our datasets which include selected
features we specified and evaluating it by evaluation metrics; show that we have
achieved high accuracy results with rate 94%. In contrast of signature based on
SNORT IDS which we activated in it the latest rules to detects only 50.02% of
polymorphic Shellcodes in the experiment we did to compare our solution with real
IDS system. For different security reasons we have selected SVM as the method we
depend on because of the malicious recall rate of 99.33% in detecting polymorphic
NOOP’s with low false alarm.

Keywords: Shellcode, Buffer Overflow, No Operations, Polymorphic, Remote
Code Execution.
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1.1. Introduction

Information Technology infrastructure is always suffering from various
vulnerabilities threats especially zero-day (Oday) vulnerabilities which are the main
reason in destroying systems, leak information and cause financial destroy. Buffer
overflow is the most famous type of vulnerabilities which can hijack systems, execute
remote applications, and spread worms. In Figure (1.1) buffer overflow appears that it
is a high severity and serious vulnerability used in cyber-attacks with rate of 23%
throw 20 years. (National Institute Of Standards and Technology, 2014) (Younan,

Information xss CSRF
Format Leak ; 0%
R Commanc njectvins String ace Conditions
% ;
Authentication 1% Crederft.al , . 0%

Configuration
2% 2% \ \
Numeric Errors

2%
Path Traversal

3%

Resource Management
a4%

Figure (1.1): Top Vulnerability types with a high severity (Younan, 2013)
Buffer overflow performed by applying a vector attack which is called Shellcode.
Shellcode is an application that can execute remotely. It consist of three parts, the first
is the NOOP which has CPU instructions that don’t do anything except moving the
instruction pointer to the next address to execute it. The second part of Shellcode is
the payload which has the malicious application that attacks the systems and the last
section is the return sled which point on any segment of the NOOP section in the
Shellcode. NOOPS in usual has the hex representation of 0x90 but hackers use
alternative and equivalent instructions that can do nothing in CPU these NOOPs
alternatives called polymorphic NOOPs. This kind of attacks forced security

companies, and security researchers try to find the optimal solution that can protect

BRE 3J|_t|>|
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systems from this vulnerabilities. Despite numerous contribution on this area, but there
is still no full solution that can protect and avoid systems from being hacked by buffer

overflow.

A buffer overflow caused because of bad programming practices used from
programmers by working with memory without boundary checking, so while writing
data to a buffer overruns the buffer’s boundary and overwrites adjacent memory

locations (Buffer overflow, 2016).

According to this issue, researchers start putting solutions by advising using alternative
programming languages that have built-in protection against accessing or overwriting
data in any part of memory (Buffer overflow, 2016). As C and C++ provides ability to
work with memory without checking buffers boundaries in writing. In consequence of
that, advised to stop using standard library functions and use safe libraries that check
boundaries (Spafford, 1988). Also, Microsoft provided application programming
interface (API) routine to use Point Guard. It implemented executable space protection
in the core of operating systems, created data execution prevention (DEP). Beside that
invented address space layout randomization (ASLR), and Return Oriented
Programming (ROP) prevent. Although of this efforts, hackers always find ways,
holes, and new techniques to skip this prevention technique. To date, most network
intrusion detection systems detect and prevent such attacks by identifying worms and
Shellcodes by using fixed byte sequence of signature which stored in the updatable

database of previously known worm’s payload (SNORT, 2016).

Concluding that there is no one solution for this threat but we need a package from
dozens of solutions which every solution solve one face from buffer overflow faces,
so researchers use static analysis by analyzing the source code and dynamic analysis
that analysis the applications on runtime. Their a point of view that looks at this
problem from another side by not working on the system itself but work on the network
level and identify the packets transferred in the network that causes buffer overflow
attack. In this area there lots of researches that detect and prevent the payloads on the
network; but as usual their techniques from hackers to evade this approaches.
Nowadays there lots of engines that produce encrypted Shellcodes like those in
Metasploit Framework (Rapid7, 2004), ecl-poly (Gushin, 2008), AdMutate (K2,
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2001), or CLET (CLETteam, 2003). By digging down into the structure of Shellcode,
there are main sections must be in the Shellcode to make the overflow success. Our
work takes NOOP sled section to identify the Shellcode while it is transferring in the
network, NOOP section can be consists of the large probability of useless instructions

which generated and obfuscated by Shellcode engines.

In this research, Data Mining algorithms used to be trained on features extracted from
the vast amount of polymorphic NOOPs in Shellcodes. This let the classifier knows
the patterns which identify this section of Shellcode. So our solution can alarm that the

system under buffer overflow attack.

1.2. Statement of the problem

IDS usually detects Shellcodes based on signature pattern and identify
Shellcodes through the identification of NOOPs. Attackers defect that by equivalent
instructions which act as NOOP (Polymorphic NOOPs).

Solutions have been deal with this problem (Polymorphic NOOPSs). They based on
searching for NOOP equivalent instructions, and classify the frequency of instructions;
but still, they have the weakness to catch polymorphic NOOPs which they are suffering
from detecting the new one-byte equivalent NOOPs, new multi-byte NOOPs,
extensive features of instruction parameters, and the great combination of instructions

which do nothing.

Those weaknesses show that there is a problem on the daily new polymorphic NOOPs
generated.

1.3. Objectives

1.3.1. Main objective

The main purpose of this work is to propose a new solution based on Data

Mining techniques to detect unknown and polymorphic Shellcodes.

1.3.2. Specific Objectives:

e Get API of polymorphic payload engine generators to generate the corpus

automatically.
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e Generate Shellcodes from different engines and select features from
abstracted disassembled instructions used in NOOP section to build the
dataset.

e Develop a script that use data mining algorithm such as (Decision Tree,
SVM, etc.) classifier to use the dataset as input to classify the Shellcode.

e Testing and evaluating accuracy and performance metrics of our solution.

e Comparing the proposed solution against signature-based and rules of

SNORT IDS to measure that our solution is more powerful.

1.4. Scope and Limitations

e The approach use Intel Architecture 32 (IA-32) Shellcodes (Intel, 2003).

e The approach based on classifying the polymorphic NOOP sled.

e Many types of research work on the body or return sections, but our
proposed solution built on polymorphic NOOP sled section because of this
section available all time and have 256”n possibilities where n is the length
NOOP’s section.

e The dataset collected and generated from top polymorphic Shellcodes

engines.

1.5. Importance of Research

Systems, application, or legacy systems always suffer from buffer overflow
vulnerabilities which rank as high dangerous vulnerabilities (Younan, 2013). Which
can cause if not successful a Denial of Service (DOS), and if it fully success to execute

remotely worms and steal sensitive data.

This research helps network administrators to protect networks. The protection from
most harmful effects caused by remote code execution buffer overflow exploits on
their systems or on applications they used based on the detection solution we introduce

in the research.
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1.6. Methodology

In this section we demonstrate proposed solution that we looking forward to
apply for achieving our goal, listed as the following steps:

1.6.1. Analysis:

e Collect the most popular Shellcode engines of Metasploit which its architecture
is IA-32 like SINGLE-BYTE and OPTY2 engines so we can study and analyze
them.

e Create homemade payload that makes reverse shell on Windows system.

e Apply our payload on the zero-day exploit, so we create shellcode that includes
all the sections of Shellcode.

e The implementing script that applies automatic generation on the engines with
all possible parameters. So we can generate a significant amount of Shellcodes

that obfuscated and became polymorphic Shellcodes.

1.6.2. Preprocessing:

e Collect all Shellcodes samples and create a script that separates the NOOP-
sleds section from the core payload.

e Disassembly all the NOOP sections.

e Build dataset by feature selection of instruction without the operand
parameters; (this step act as pruning to allow the machine learning algorithm
detect coarse-grain patterns for encrypted NOOPs. By this, we can reduce the
size of input dimension, and reduce the unlimited alternatives that can be in the
parameters).

e (Categorize the datasets according to the source engine label.

e Add clean data and applications files with labeling with a clean label.

1.6.3. Classification:

e Use classification model such as SVM, Decision Tree, etc. to train it with 70%
of the dataset with the balance of clean and Shellcode data that we have as we

see in Table (1.1) examples of input corpus files with its labels to be trained.
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Table (1.1): Example of our input dataset files to the Classification model
Clean XOR XOR SWAP Subtract  Load

Malicious ' P push swap call Jump

1.6.4. Results and Evolutions:

e Use the rest 30% of data set as testing to measure the accuracy of detection
solution with balancing the clean and Shellcode.

e Test new unknown Shellcodes against the classifier model to know the
accuracy and true positive rate in detecting new unknown Shellcodes.

e Evaluate this solution against the false-positive rate that alarm (annoying) users
without any actual threat.

e Compare our results with signature-based solutions.

e Compute the performance metrics of confusion matrix.

e Evaluates performance in network data processing by identifying how large is

data processed per second to identify reliability.

Preprocessing Evaluation

eseparate NOOP stesting

section ¢ evaluation metrics
e dissassyembly e performance
eopcode seprate
edataset

e .

eEngines

egenerate shells and
collect benchmark set

;

e Data Mining Methods I

Classification

Figure (1.2): Solution steps
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1.7. Solution on Real Environment

We are taking in consideration this solution steps is experimental. So we are
planning how this solution be applicable on the real networks. We will use SNORT as
it’s an open source IDS and integrate it with a plugin that will get the stored
classification model and apply it on the network packet instance and identify the

packets as malicious or clean as show in Figure (1.3).

IDS Plugin

stored
calssification
model

Figure (1.3): Solution Process in Real Environment

1.8. Thesis Organization

The thesis divided into six chapters, chapter one includes the introduction;
chapter two provides Theoretical Background, chapter three provide the related work
of detecting polymorphic NOOP’s researches; Chapter four provides the description
of the proposed methodology including dataset generating with feature selection,
chapter five illustrate the results of experiments with the analysis. Future work listed

in chapter six.

ol Ll fyl_llsl |
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Chapter 2
BACKGROUND
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In this chapter we are reviewing buffer overflow with the attack components to
understand how this attack performed with polymorphic Shellcode besides how worms
use the remote code execution to propagate. Later we are talking about disassembly
engines and how it convert hexadecimal to assembly instructions, then we review the
different types of polymorphic NOOPs engines that can generate polymorphic
instruction NOOPs. Also, describe the libraries used in the different stages of this
research, later we reviewed the data mining and the methods used in classification

beside performance evaluation.

2.1. Buffer overflow vulnerability components

In this section we are illustrating the buffer overflow and how it performed in the
memory. Also, described Shellcode structure and how it be polymorphic. Finally
describe what is remote code execution and zero day’s vulnerability and how malware

used them to perform the attacks.

2.1.1. Buffer overflow

It is a strange issue while the program writing data to a buffer overruns the
buffer's boundary and overwrites adjacent memory locations. This is a violation of

memory safety (Buffer overflow, 2016).

When program executed, it represents in the memory especially in the stack as

shown in

Figure (2.1). Itis the representation of an array of characters indicating the address
of stack pointer(esp), the address of the base pointer(ebp), and return address that
points to the address of the caller of this function. In case there is no boundary
check in the program, and we need to write data to the name buffer, and this data
is larger than the buffer size it will overwrite the return address, so the application
will corrupt when the execution search for the new address and couldn’t find it. So
Hackers exploited this vulnerability by populating this buffer with binary
application and following it with address of where this binary payload located, the
buffer looks like Figure (2.2)
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top of stack

esp -> Bx0019feel

A

stack growth

ebp -> @xee19ff2e frame pointer

return address

Figure (2.1): basic layout of stack with 64 character buffer called name (Bright, 2015)

top of stack

stack growth

10x12345678: jmp [esp + 8]

ebp -> Ox0019ff20 frame pointer

return address|

Figure (2.2): Stack overflow with calculator Shellcode and return address replaced
to point on Shellcode (Bright, 2015)
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Populated with Shellcode of any payload, for example, a Calculator and overwrite the
return address to a point to the payload start. The used attack technique called
“trampolining” which used to put the representation hexadecimal of “jmp ” instruction
in the return address. This is one face of applying the BOF to let us understand how it

exploited.

2.1.2. Shellcode

0: 31 cO Xxor teax, teax

2: 50 push feax

3: B8 41 41 41 64 mowv SOxE4414141, teax
8: cl =8 08 shr $0x8, 3eax

b: cl e8 08 shr £0x8, teax

o cl =8 08 shr S50x8, $eax

11: 50 push teax

12: b9 ed 76 53 52 mowv S0x5253766d, tecx
17: ba 4d 59 32 36 mov $0x3632594d, fedx
le: 31 di xOT tedx, tecx

le: 51 pus=h fecx

i1f: b9 € 72 61 71 mov £0x7161726e, tecx
24: ba 4e 33 2d 38 mov $0x382d334e, $edx
29: 31 di1 Xor tedx, 3ecx

2b: 51 push fecx

2c: b9 éc 75 T8 T8 mov SO0xT8T78756¢c, tecx
36: Xor

38: Op code push Assembly

39: . . mov . . b, F2CX
G- (instruction in hex) o instruction L seax

Figure (2.3): OP Code (hex) representation of assembly instructions (Shellcode, 2016)

A small piece of code used as payload in the exploitation of software vulnerability.
The name “Shellcode” because it typically starts a command shell to allow the attacker
controlling the compromised machine (Shellcode, 2016). Shellcode is the

hexadecimal representation of the CPU instructions as in Figure (2.3).

To use Shellcode in exploitation, it must include three sections 1- NOOP Section. 2-

Payload Section 3- Return Address Section. As shown in Figure (2.4).

S NNNNNN SSSSSSSSS RRRRRR

Figure (2.4): Shellcode structure (Shellcode, 2016)

Ol LaCN Zyl_ﬂbl
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The most important part in the Shellcode which required to let the exploit work is the
return address, this return address points to the stack frame that includes the Shellcode
itself to let the CPU execute the payload. While this RETURN addresses points on the
stack, it may point to any part in the middle of the Shellcode on the stack. It is
representing programs in the stack, and it is variant from computer to another computer
then we need to use useless CPU instructions section that forward the execution to the
real payload that controls the system because the return address will point to unknown
specific place inside the NOOP section.

2.1.3. Polymorphic Shellcode

NNNNNN ddddddd SSSSSSSSS RRRRRR

]
°
<
=
IS
=
2
1]
<

Figure (2.5): Polymorphic Shellcode

It is the same Shellcode but with changes which consist of an encoded payload
and it include the decoder on its body to decode the payload while execution as shown
in Figure (2.5). Also, it has polymorphic NOOP section which consists of 1-byte,
multi-byte of useless operations which act like NOOP instruction (0x90). There are
lots of engines that apply dozens of techniques on the Shellcode to make fully

undetectable (FUD) from antivirus and firewalls.

Ox50x5TOxE00x0d0x 7O TOX 720 740X 5 FBx5 TOx280% 2 70x0TOx 70X 270X 290x 2 elx 738X 7O0x73
Ox748x650x6d@x280x2 7TAx648x 050 cOx208x2 fOx 730x200%2 fOx710x 200x 2 fOx660x208x430x3a
Bx5cx770xE00x6e@xb40x 6 0x 770x 7 30x5cBx 7 30x 700% 730x 7 40x650x d@x 330x320x5clx 2a0x 2@
Bx3e@x200x4e0x550x4 clx 200x320x3ebx268x310x 2 70x 290x 2 00x 600X 660X 200x2 7Ax570x600x6e
Bx270x200x600x6e0x200x5TOX5 FOx690x6dBx 706 0x 7 20x 7405 TAx 5 0x 2 80x 2 70x 708x6cOx61
Bx740x600x6T0x7 20x0d0x270x290x 2 eBx 7 30x 700X 730x 740 x650x6d0x 2 80x 290x 2 00x658x6c0x7 3
BxE50x200x5T0x5F@x090x6d0x 706 FOx7 20X 740 50X 5 F0x2 80x 2 7AX 6T 0x 7 30x2 70x208x 2e0x73
Bx790x%730x 740x650x6d0x 2 80x 2 70x 7 20x6dBx200x 2d0x 7 20x660x200% 2 F 0x 2 00x 200 % 3eBx200x2 F
BxE48x650x 760x 2 fOxbedx 750xBcOxbclx2 00332 0% 3% 260x310x2 70x 290x 200x2 30x680x600x 20

Figure (2.6): Shellcode

2.1.4. Worm

(Barwise, 2010) Defines worms as “Standalone malware computer program
that spread in other computers at the network by replicating itself”. This is the
difference between it and between the viruses (Computer Worm, 2016). The worm use

13
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at most in spreading a BOF exploits that allow it to RCE itself in other computers

without any interaction from end users.

2.1.5. Remote Code Execution

Remote code execution is used to define an attacker's capability to exploit
program vulnerability to execute the malicious application on a target machine, no
matter where the device is geographically located. Then attackers can take complete
control of an affected system with the privileges of the user running the application.
Most of this weakness allow the execution of machine code and most exploits
consequently inject and execute Shellcode. It is the most powerful effect which a bug
can have because it allows an attacker to completely take over the machine the

vulnerable process is running on (Bulbapedia, 2016).

2.1.6. Zero Day

A zero-day also known as zero-hour or 0-day vulnerability refers to a hole in
the software that is unknown to the vendor which hackers can exploit to affect
computer programs, data, or a network adversely. It is known as a "zero-day" because
once the flaw becomes known, the software's author has zero days in which to plan
(Symantec, 2016) or deploy patches. Attacks are employing zero-day exploits before
or on the day that notice of the vulnerability is released to the public. Zero-day attacks
are a severe threat because its attacks can include infiltrating malware, spyware or

allowing unwanted access to user information. (Symantec, 2016)

2.2. Disassembly Engines

Describing in this section the most famous disassembly engines which convert byte
sequence or hexadecimal sequence to the original assembly instruction according to

the different syntax type which user chooses.

2.2.1. Libdasm

“Libdasm is a C-library that tries to provide a straightforward and convenient
way to disassemble Intel x86 raw opcode bytes (machine code). It can parse and print

out opcodes in AT&T and Intel syntax” (Wicherski, Cesare, & Carrera, 2016).
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2.2.2. BeaEngine

A library coded in C created to decode instructions from 32 bits and 64 bits
Intel architectures. This library built for those who like analyzing malicious codes and
more generally obfuscated codes. BeaEngine decodes undocumented instructions
called "alias.” In all scenarios, it sends back a complex structure that describes exactly
the analyzed instructions. It can decode 32-bit architecture as the following bytes

sequence (BeaEngine, 2013)

0x89, 0x94, 0x88, 0x00, 0x20, 0x40, 0x00 (byte sequence in hexadecimal)

It can print back on AT&T syntax

Movd %edx, %ds:402000h(%eax,%ecx,4) < (converted instruction in AT&T syntax)

Moreover, the result on MASM32 syntax is

Mov dword ptr ds:[eax + ebx*4 + 402000h], ed < (converted instruction in MASM32 syntax)

2.2.3. Capstone Engine

Capstone is a lightweight multi-platform, multi-architecture disassembly
framework implemented in pure C language. It is an ultimate disassembly engine for
binary analysis and reversing in the security community. It has many features like high
performance, lightweight, simple API, details on disassembled instruction
(decomposer). It is widely used in reverse engineering and disassembler applications.
We are using it in our research as external Python library to convert the hex data to

assembly. (Capstone, 2010)
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2.3. Polymorphic NOOPs Engines

In this section we are describing the most polymorphic NOOPs Engines used by
hackers that they bypass networks security and firewalls by converting the Shellcode
to polymorphic that the security tools could not track that this data flow is a vector
attack. We are using here using the engines that can reshape the NOOPs sled to

unknown pattern.

2.3.1. ADMmutate

It is atool created in early 2001 that allow the attackers to obfuscate any Buffer
overflow vector attack the coder of this tool K2 and wOOw00. The main purpose of
this tool was to change the exploit signature every time it is executed which we know
it results as “Polymorphic Shellcode.” One of its technique is to change NO operation
instruction to an equivalent instruction of 0x90 they always replace the NOOP section
with 55 NOORP instruction possible; This way allow the attacker bypass IDS because
the signature is changing each time. (SANS, 2002)

2.3.2. CLET

Convert the NOOP section to multi-bytes no operation and XOR encryption
the payload body with using JUNK Bytes to defeat spectrum analysis of the data

mining.
2.3.3. Metasploit

It is a computer security framework that executes vulnerabilities exploits
against remote target machine and widely used in penetration testing world. It has
many encoder’s engines to encrypt the payloads also it provides many engines to
encrypt and make the NOOP section polymorphic. It has two engines for an x86
processor that can convert the NOOP section to polymorphic SINGLE-BYTE and
OPTY?2. The first one is single-byte NOOP on this engine they got the ADMmutate
55 NOOP equivalent and added to them more of instructions to make the total of single
byte 67 instruction. The second engine is OPTY2 that can create a multi-byte NOOP
sleds with different length, and it has more efficient that CLET in this feature. So
Metasploit NOOP generates a sequence of bytes of arbitrary length that equivalent to
tradition NOOP sled (a sequence of 0x90 bytes) without having any predictable pattern
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to bypass the IDS/IPS signature scanning of common NOOP Sleds. (Rapid7, 2013)
(Burns, et al., 2007)

2.4. Machine Learning Tools and Libraries

2.4.1. Scikit-Learn

It is an open source library with simple and efficient tools in doing data mining
and data analysis built for Python usage applications. It provides a range of supervised
and unsupervised learning algorithms via the consistent interface in Python. This
Library built upon SciPy (Scientific Python) that need include many libraries like
Numpy and MAtplotlib, so we use Anaconda python version which has all of the

required libraries. (Cournapeau, 2007) (Brownlee, 2014)

2.4.2. Anaconda

It is a leading freemium open data science distribution of Python for large-scale
data processing, predictive analytics, and scientific computing, that aims to simplify
package management and deployment. We used this distribution to reduce the python

deployment complication.

2.5. Data Mining

Data mining is the process of different queries and getting the useful information
that’s not previously known or unexpected (Khan, Thuraisingham, & Masud, 2011).
“It refers to the nontrivial extraction of implicit, previously unknown and potentially

useful information from data in databases” (Zaiane, 1999);

While data mining and knowledge discovery in databases (KDD) are usually treated
as substitutes, data mining is a part of the knowledge discovery process as shown in
Figure (2.7) it consist of sequence of steps as following:

1. Data cleaning (remove noise).
2. Data integration (multiple data sources may be combined).
3. Data selection (data relevant to the analysis task are retrieved from the

database).
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Data transformation (data are transformed or consolidated into forms

appropriate for mining by performing summary or aggregation operations).

Data mining (essential process where intelligent methods are applied to extract

data patterns).

Pattern evaluation (identify the truly interesting patterns representing

knowledge Based on some interesting measures).

Knowledge presentation (visualization and knowledge representation

techniques are used to present the mined knowledge to the user) (Han &

Kamber, 2005)

: -
. rd
: i:hj:
v :

Data Mining ,, Patterns

§ A
v :
Selection and

Transformation

: i || A
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Cleaning and of
Integra V

Databases ! Flat files

\

Figure (2.7): Data mining process steps (Han & Kamber, 2005)

Data mining studying areas include:

Association — find patterns which something is connected to another.

Sequence or path analysis - searching for patterns where something leads to

following things.
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e Classification - mining for new patterns and label all relevant objects with each
other.
e Clustering - visually groups things that related which not previously identified.

e Forecasting - realizing patterns in data that can lead to reasonable predictions.

Data mining technology is used in many research areas, including mathematics,

cybernetics, genetics, marketing, and security.

2.5.1. Supervised and unsupervised

Machine Learning is a type of algorithms that is data-driven, i.e. unlike
"normal” algorithms it is the data which "tells" what the "right answer" is. A machine
learning algorithm would not have such code definition, but would "learn-by-
examples™: you will show several malicious data, and the exemplary algorithm will
eventually learn and be able to predict the class for the new data if it is malicious or

clean.

This particular example of our situation is supervised, which means that examples
must be labeled, or explicitly say which ones belong to our class and which ones are

not.

In an unsupervised algorithm samples are not labeled, i.e. we do not say anything. In
such a case the algorithm itself cannot "invent™" what class it belong, but it can try to

cluster the data into different related groups. (Vento, 2016)

The proposed solution intends to use supervised learning because in our case we have

two labels of malicious data and clean data.

2.5.2. Data Mining Classifications methods:

In our research we evaluating a variety of classification methods against our
feature extracted such as: Naive Bayes (Bernolli & Multinomial), Support Vector
Machine (SVM) and Decision Tree.

2.5.2.1. Naive Bayes:

Naive Bayes classifier based on Bayes' theorem, one of the main advantages of NBC

is it doesn’t require large dataset of training set to find the means and variances of the
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variables needed for classification. We used Multinomial and Bernorlli methods of this

algorithm. (RapidMiner company, 2016)
2.5.2.2. Support Vector Machine (SVM):

Support Vector machine is supervised learning methods that analyze data and
recognize patterns, it’s used for classification and regression analysis (Eswari &
Gunasundari, 2013).

2.5.2.3. Decision Tree

Decision tree is one of the supervised learning algorithms that follow the “Divide and
conquer” approach to solve the problem by learning from autonomous cases (lan &
Witten, 2005).

The structure of tree includes: root node, branches and leaf, each node represent a test
for an attribute, and the branch fork the result, and each leaf node represent a class
label as shown in Figure (2.8) (Tutorials Point, 2016).

age
young senior
middle-
aged
Student? yes Credit_rating?
no yes fair / \excellent
no yes no yes

Figure (2.8): Decision Tree
2.5.2.4. Stochastic Gradient Descent

A very efficient approach to discriminative learning of linear classifiers under convex
loss functions. SGD has been successfully applied to large-scale and sparse machine

learning problems often encountered in text classification and natural language
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processing. It is efficient and easy to implement but it is sensitive for the feature scaling
(Cournapeau, 2007).

2.5.2.5. Adaptive Boosting

It is @ machine learning meta-algorithm(estimator) that begins by fitting a classifier on
the original dataset and then fits additional copies of the classifier on the same dataset
but where the weights of incorrectly classified instances are adjusted such that

subsequent classifiers focus more on difficult cases (Cournapeau, 2007).
2.1.1. Evaluation Methods
2.1.1.1. Confusion matrix

The confusion matrix is a very useful method for analyzing how well
our classifier can define and detect the different classes, its structure as shown
in Table (2.1).

Table (2.1): Confusion Matrix

True Class

+ve -ve

+ve TP (True Positive) | FP(False Positve)

Predicted Class FN (False

-ve ) TN(True Negative)
Negative)

e True positive (TP) refer to positive instances that correctly labeled.
e True negatives (TN) refer to negative instances that correctly labeled.
e False Positive (FP) are the negative instances that were incorrectly labeled.

e False Negative (FN) are the positive instances that were incorrectly labeled.
2.1.1.2. Performance Measures

From the confusion matrix, we can estimate and calculate the accuracy,
recall, precision, and F-measure which is used in evaluating the performance
of the classification method. This performance metrics used in chapter five to

evaluate the proposed solution.
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2.2. Dynamic, Static, and Hybrid Analysis

Static analysis is performed without runtime execution. Static analysis tool
inspects program code or in assembly for all possible run-time behaviors and seek out
coding weakness, back doors, and potentially malicious code. Dynamic analysis acts
the opposite approach and is executed while a program is in operation. Dynamic test
monitor system memory, functional behavior, response time, and overall performance
of the system. The hybrid analysis combines the two mentioned analysis. (DuPaul,
2013)

2.3. Summary

In this chapter, we have described what is the most techniques and tools used in
our research. Beside that we discussed what is the buffer overflow and the Shellcode
with why it’s related in our research and where is the NOOPs sled located and why it
is used. We have used as our primary development environment the Anaconda which
supported all the libraries we need in writing the scripts like Python, NLTK and the
valuable library Scikit-Learn, which we used it all the time in classification. We used
Metasploit to generate the malicious dataset and select features using Capstone engine.
Also, we mentioned about the data mining techniques which we are using in the
proposed solution and which type we are using it (supervised). Finally, referred to
about the confusion matrix and how we use it in evaluating the performance of the data

mining algorithms.
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Overflow detection and prevention problem have been studied since the mid-
nineteenth. However, many modern types of researches have been published to solve
this hot problem. We have review many researches and their approaches to deal with
this attack. There was many types of analysis, we are illustrating in this chapter these
types in sections like describing the research of some in the field of static analysis
which analyze the Shellcode statically and predict if it is malicious or clean. Others
used dynamic analysis which try to detect Shellcode using analyzing the packets in
real execution environment. Also, quantitative analysis used by studying the
polymorphic engines and how it works. Finally, illustrate the Hybrid way by using the

static and dynamic in mixture to detect the Shellcode.

3.1.  Static Analysis:

(Gamayunov, Quan, Shakharov, & Toroshchin, 2009) proposed Racewalk
algorithm which is a significant modification of the Stride algorithm (Akritidis,
Markatos, Polychronakis, & Anagnostakis, 2005) which had linear computational
complexity, they claim novelty of NOOP-sled detection using 1A-32 instruction
frequency analysis and SVM-based classification, this approach reduces the false
positive and the speed of operation is 1Gbps, main idea in this algorithm is there
NOOP-zone which consists of generally useless instruction to allow the return address
zone be in the correct stack segment because this varies from system to system, so they
detect the sled candidates and sent them to SVM-based instruction frequency analyzer.
Using only Four Shellcode engine generator they applied this algorithm. Still there
many defects like detecting NOOPs of 1A-64 and couldn't detect the Shellcode that
construction methods do not rely on NOOP-sleds or used Self modified sleds not
supported and bypassed by spoofing classifier in same instruction set but with unusual
operands.

(Pasupulati, et al., 2004) have proposed “Buttercup” SNORT plug-in that can
counter against polymorphic buffer overflow exploits by targeting 19 return address
ranges that buffer overflow exploits, They assumed that the encrypted shellcode would
change every other bit in the payload packet to avoid detection but there critical part
in payload couldn’t be encrypted this part is the “return” memory address. Simply they

identify the ranges of the possible return memory addresses for existing buffer-
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overflow. The return address ranges they were collected from various Buffer Overflow
vulnerability that affected many operating systems. As their evaluation results in
excellent detection for Shellcode, but there are many drawbacks in their solution
because may not be detected if there is a miscalculation in the “range offset” and
“range depth” values; beside that including the return address ranges may be changing
according to operating systems updating or upgrading that will get with it more ranges

that the system couldn’t know about it and the attackers do.

(Akritidis, Markatos, Polychronakis, & Anagnostakis, 2005) have designed new
sled (sequence) detection heuristic called STRIDE that detects several types of sleds
that have significantly more computationally efficient which can be used in networks.
So their demonstration depend on detection heuristics can be thwarted by more
elaborate sled obfuscation techniques like NOOP instructions, One-byte NOOP-
equivalents, Multi-byte NOOP, Four-byte Aligned, Trampoline-sled, obfuscated
Trampoline-sled. By searching for every position of the data to find a sled. Despite
STRIDE can detect several classes of sleds that cannot be identified by other solutions,
the low false positive rates, but it still suffer from some weakness if the attacker does
not use sled in the payload or use self-modifying sleds, and processing time very
exhaustive beside that STRIDE could not detect the payload attack if there new

equivalent NOOPS long bytes as they have restricted space of equivalents.

(Hsu, Guo, & Chiueh, 2006) present Nebula system which works as network-based
buffer overflow attack detection that can detect both known and zero-day buffer
overflow attacks based on packets analyzing without modifications on the hosts. By
using the generalized signature to capture all known buffer overflow attacks to reduce
the false positive to a negligible level. So the main signature that Nebula uses to detect
buffer overflow attacks is a sequence of identical 4-byte words that correspond to an
address in the stack region or text region, to reduce false positive rate Nebula recognize
the FTP, HTTP, P2pfile sharing, and Bit Torrent and exclude bytes in downloaded
files so this improves the optimization significantly. For overall design the proposed
design for generalized signature is as following: if an input string contains a stack
address that repeats N times, then it is regarded as code injection (Cl) attack; if an
input string contains at least N copies of a pattern that consists of a shared library

function’s entry point address followed by at least one stack address, then it is regarded
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as return to Libc (RTL) attack and this algorithm depend on N =3. This design solves
two types of payloads attack but couldn’t handle ROP or non-ASLR attacks.

(Zhao & Ahn, 2013) Proposed a technique for modeling Shellcode detection and
attribution through a novel feature extraction method called instruction sequence
abstraction, which extracts coarse-grained features from an instruction sequence. This
technique uses Markov model for Shellcode detection and support vector machines for
encoded Shellcode attribution. There novel solution based on static analysis and
supervised machine learning techniques, to extract coarse-grained features used
instead of byte patterns, the instruction sequence abstraction. The evaluation shows
that this solution can detect all types of un-encoded Shellcode from their dataset and
can attribute encoded Shellcode to its origin engine with high accuracy. Despite the
efforts that got our attention; but it has some weakness to 1A-64 Shellcodes beside the
small sample they used in training and all of this samples was from only one engine
also using all Shellcode sections in the training because the model works on known
payloads and range of it available for the researchers but it bypassed by adding low
NOOP’s all together with unknown payload in Shellcode so it can spoof it and pass.

(Wang, Wang, Luo, & Fang, 2007) Proposed DMPolD (Data Mining
Polymorphism Detection) that can detect polymorphic exploit based on semantic
signature and data-mining. The proposed method recognize JUMP address based on
Bayes algorithm. The contribution was in building the mode of OSJUMP using online
worms using specific JUMP addresses and based on this model analysis of features of
polymorphic exploits and features of perfect ones, a then method to detect exploit
through recognizing JUMP address using data mining. To prove there idea they
implemented snort plugin (ODMSnort) and evaluated the approach on it, the results
show DMPolD can detect polymorphic exploit with very low false-positive. Our
opinion is supervised machine leaning to detect Shellcode depending on JUMP address
on training could not detect all the worms or non-seen worms because the JUMP
address may always be not using this JUMPs that they used.

(Masud, et al., 2008) Proposed DEXxtor a data mining based exploit code detector
that protects network services. The they pivoting assumption that the normal traffic to

network services contains only data whereas exploits contains code. Their system
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trained with real data containing exploit code beside normal traffic after that put
DExtor between a web service and its gateway firewall. Training consists of
disassembly, feature extraction, and classification. The feature extraction depends on
instructions count, instruction usage frequency, and code vs. data length. The data set
used contained real exploit code as well as normal traffic to web servers. The
evaluation applied on unencrypted exploits from Metasploit and encrypted using other
nine engines to generate 1000 exploits and collect from internet 9000 exploit; this data
set applied on different classifiers, and the results show very high accuracy and little
false alarm rates. We see that according to the main assumption on DExtor which
depends on main use for the network is transfer data and if there lots of instructions
found on the network means it may include attack, but this is entirely untrue if we used
the network in downloading binaries or executing some application from LAN nodes.

3.2.  Dynamic Analysis:

(Polychronakis, Anagnostakis, & Markatos, 2006) present Polymorphic Shellcode
detection method by emulate execution of every possible instruction sequence in
Network Intrusion Detection System(NIDS) embedded CPU, aiming to identify the
execution behavior of polymorphic Shellcodes, their approach relies on fully-blown
Intel Architecture 32 bit(IA-32) CPU emulator. The execution of a Polymorphic
Shellcode splits into the execution of two sequential parts: the decryptor and the actual
payload. If an execution chain of an input stream during decoder decryption read the
encrypted payload in order to decrypt it then, the system raises the alarm. As our
review of this approach we found that this methodology only detects payloads that
decrypt their body before executing their actual payload so the plain payloads couldn’t
be catch, also executing all the instructions will delay the throughput of the network,
beside that the attacker can leverage context not available at the network level for
building Shellcodes that cannot be unambiguously executed on the network level

processor emulator. Detecting such attacks remains an open problem in this approach.

(Fen, Fuchao, Xiaobing, Xinchun, & Bing, 2012) present a method uses
randomization based on data protection through protection of pointers and arrays,
because of buffer overflow nature which depends on exceeding write on the limited

area and populates the return address they use randomization on the arrays and pointers
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in program space to protect buffers, point data, and return address. This randomization
applied to the source by using XOR encryption for all the array and buffers, so when
the overflow happened, the target will be an encryption value which couldn’t point to,
then the attack failed. This approach applied on the coding time to protect yourself
application from using it in any type of buffer overflow attacks on the systems, but the
major problem still available on the applications from the shelf or on the operating

system itself.

(Khodaverdi & Farnaz, 2013) proposed robust run time heuristic for detecting
those Shellcodes which hard-coded addresses as they take in consideration there still
too many users using older versions of windows which not protected by Address Space
Layout Randomization (ASLR) -enabled Windows. They used a custom emulator
which supports the execution of 1A-32 instructions, and they repeat the execution
multiple times starting from each location of the input stream to find all possible
executable sequences of instructions in the input stream and detect any hard corded
address that points to the stack pointer. Their evaluation results show low false positive
on 10 million random binary. They assume using this emulator in a host level to detect
the attacks and for better performance. However, this approach could not detect return

oriented programming (ROP).

3.3.  Quantitative Analysis:

(Song, Locasto, Stavrou, Keromytis, & Stolfo, 2009) present a quantitative
analysis of the strength and limitations of Shellcode polymorphism and describe the
impact of these techniques in the context of learning-based IDS systems. They focused
on two methods: Shellcode encryption-based and targeted blending attacks; because
this two types used in the wild attack and successive in evading IDS sensors. Their
paper demonstrates metrics to measure the effectiveness of modern polymorphic
engines and provide insights into their designs. The paper dive in the construction of
many Shellcode types to understand the overall issue, and after that analyzed the
polymorphic engines —six of them- and by generating 10000 unique samples they
plotted visualization images for each engine outputs to extract the pattern they use
in creating the op codes, also they combines two engines that using polymorphism

and blending in one engine called it A Hybrid Engine, they simply use CLET to
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cipher the Shellcode, then hide CLET’s decoder with ADMmutate and use
ADMmutate’s advanced NOOP sled generator and show how the attackers can
blending between many engines to generate new patterns. After that presents new
design to detect the modern obfuscation techniques. This paper allows us to go throw

the internal of designing the polymorphic Shellcodes engines.

3.4.  Hybrid Analysis:

(Yuan & Ding, 2011) Proposed a method that use’s static analysis (source code
analysis) with the dynamic test (test a program while it is running), so this approach
strikes a proper balance between static and dynamic analysis to identify buffer
overflow vulnerabilities in binary code (1A-32) without source code. They used two
steps in their approach, first find some potential weakness locations then test every
potential weakness locations so reduce the false positive. After disassembly programs
they go throw many steps include identify function call relations, analysis stack space,
analysis parameters, the use of local buffer, and finally determine the overflow
function by using BugScam that can detect functions utilized in the binary file like
Strcpy and so on and on the dynamic use Ollydbg to populate this functions that
identified before in static to see if it check bounders or it overflow, testing results
shows low false alarm. We see this approach can handle the stack overflow, and heap
overflow can be a success and need from us to put all the binaries of the organizations
to this analysis to allow it know if there is the ability to buffer overflow and this is not

easy to be done.

3.5. Comparative Analysis:

(Silberman & Johnson, 2004) This paper examines two approaches by applying
for a generic protection against buffer overflow attacks and critique the effectiveness
of available buffer overflow protection mechanisms on the Linux and Microsoft
Corp.'s Windows platforms. They explained the concepts behind buffer overflow
protection software’s and implementation details for popular systems, Discussed
protections implementations in kernel enforced protection like MMU ACLs,
NOEXEC, ASLR and protection in compiler enforced protection like Stack Canaries.
After that describe how Linux and Windows use mixed techniques to protect from

Buffer overflow. Finally shows attack vector test results for each technique that evade
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buffer overflow according to the long list of different attack techniques. They find a
final result that the currently available solutions may not be perfect to defense buffer

overflow attacks.

3.6. Previous Solutions and weakness:
In Table (3.1) listed the related works solutions with weakness they are suffering.

Table (3.1): Related works and its weakness

Solution Proposed

weakness

Use return address range from public

Range offset of used returns

equivalent, multi-byte NOOPs by using n-
gram disassembly. (Akritidis, Markatos,
Polychronakis, & Anagnostakis, 2005)

worms to search for sleds have them to | may change at any time.
catch buffer overflow action. (Pasupulati, et | Bypassed by unseen return
al., 2004) addresses.

Use static analysis to identify the 1-byte | Self-modified sleds not

supported and processing time
very exhaustive. Bypassed by
new equivalent NOOPS long
bytes as they have restricted

space of equivalents.

Use instruction frequency analyzer to detect
NOOP sled using classification algorithm.
(Gamayunov, Shakharov, &

Toroshchin, 2009)

Quan,

Self-modified
supported, no detecting for IA-

sleds not

64 and shells does not use
NOOP
spoofing classifier

sled, bypassed by
in same
instruction set but with unusual

operands.

Detect the packets if there any 4 bytes that
represent stack address and repeated N
times. (Hsu, Guo, & Chiueh, 2006)

Couldn’t catch ROP or anti
ASLR shells. Totally outdated

in new versions of OSs.
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# | Solution Proposed weakness

5 | Use instruction sequence abstraction for all | The small sample used in
the shells in Markov model for detect shells. | training only one engine, beside
(Zhao & Ahn, 2013) bypassed by adding new

unknown payloads in the
Shellcode, so the model
spoofed.

6 | Assuming the packets in the network is data | Work only on web services.
and when there code then its exploit and
used data mining to classify. (Masud, et al.,

2008)

7 | Use data mining to recognize jump address | Couldn’t catch unknown worms
based on Bayes by building a model using | nor all worms because jump
worms specific jump addresses and added | addresses could change in
the method as a plugin to snort. (Wang, | anytime.

Wang, Luo, & Fang, 2007)

8 | Use embedded CPU to execute the behavior | Don’t detect shells that decrypt
of polymorphic Shellcodes. (Polychronakis, | body before execution, too
Anagnostakis, & Markatos, 2006) delay in packets & 1A-32 only.

9 | Use randomization in the buffer by using | Need to apply in coding time
XOR encryption for all data stored in|and couldnt apply to
memory so couldn't execute shells. (Fen, | applications you do not have the
Fuchao, Xiaobing, Xinchun, & Bing, 2012) | source code.

10 | Using return address to identify shells by | Couldn’t detect ROP types.
emulate executable sequences.

(Polychronakis, Anagnostakis, & Markatos,
2006)
11 | find a potential weakness in code and then | Handle the stack overflow and

test against BOF and after that use

BugScam to identify all the vulnerable

heap overflow can success in

case putting all the binaries of
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# | Solution Proposed weakness

functions and use Ollydbg to populate this | the organizations to this analysis
function and know if it is overflowed or not. | to allow it know if there is the
(Yuan & Ding, 2011) ability to buffer overflow and

this is not easy to be done.

3.7. Summary

As listed in this chapter. The researchers of detecting buffer overflow were using many
analysis techniques. Firstly, Static analysis in using Return address range to catch
buffer overflow. Beside identify the 1-byte equivalent, and Multi-byte NOOPs by
using n-gram disassembly. Also, use instruction frequency analyzer to detect NOOP
sled using classification algorithm. Identify the packets and if there any four bytes that
represent stack address and repeated N times. Use instruction sequence abstraction for

all the shells in Markov model for detect shells.

Secondly, Dynamic analysis assuming the packets in the network is data and when
their code then it is exploited and used data mining to classify and use data mining to
recognize jump address based on Bayes by building the model using worms specific
jump addresses and added the method as a plugin to snort. On the other hand, there
was a dynamic analysis that use embedded CPU to execute the behavior of
polymorphic Shellcodes, use randomization in the buffer by using XOR encryption for
all data stored in memory so couldn't run shells, and using return address to identify
shells by emulate executable sequences. All of these researches have defects that we
discussed on each listed approach, based on that our proposed solution will solve this
holes in the scope we identified to detect the unknown polymorphic Shellcodes by

using classification algorithm on the op-code of polymorphic NOOP sled.

As we mentioned there many proposed solutions that depend on data mining
techniques but the difference between my work and all of these solutions that we using
the NOOPs section in Shellcode and the type of data that extracted in feature extraction

because we are using the operation code of the instructions for features.
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In this chapter, we present and illustrate our solution in detecting the polymorphic
Shellcodes using essential part NOOP’s sled. This chapter is organized by defining our
solution methodology steps followed by identifying our dataset and how we extracted
and collected it from the Polymorphic Shellcode engines then how we preprocess and
feature selection the data, then describe how we applied the classification algorithms,
and finally applying used classifiers and evaluate the method. We have used as our
primary development environment the Anaconda which supported all the libraries we
need in writing the scripts like NLTK and the valuable library Scikit-Learn, which we
used it all the time in classification. We used Metasploit to generate the malicious

dataset and select features using Capstone engine.

4.1. Solution Steps

Our solution depends on using data mining classification techniques to define packets
of data if they are malicious (polymorphic NOOPs) or not. We extracted special
features which depends on the operation code of the assembly instruction of network

data. So the steps shown in Figure (4.1) is the base steps of the solution methodology.

Define Shellcode Appl
: Collect Clean APPY
Polymorphic Classification on
: Data ..
Engines Training Data

Feature Select Testing
From Clean & Classification
Malicious Model

Genrate Engine

Commands

Generate
Polymorphic Build Dataset
Shellcodes

Evaluate the
Solution

Figure (4.1): Solution Steps
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In Figure (4.2) show the overall view of the solution to detect the malicious packets
(polymorphic Shellcodes). We defined the polymorphic engines and collect the most
popular Shellcode engines of Metasploit which its architecture is 1A-32 like SINGLE-
BYTE and OPTY2 engines. Then implement script that applies automatic generation
on the engines with all possible parameters. So we generated a significant amount
(500,000) of polymorphic Shellcodes so we can label this files as malicious because
this engines is well known in the hacker’s world that can generate CPU instruction that
do nothing but not in the usual way we are writing in the assembly instructions. After
that use Capstone Engine to disassembly all the NOOP sections. The last step in
building the dataset is to extract the features that we will use in the classification
algorithms, so we got the operation code of the assembly instructions. Also, repeat the
process for clean data and applications files to build the equivalent dataset which

labeled with clean.

The last step in the solution is to pass this two labeled dataset to the classification
algorithm. We used classification methods such as SVM, Decision Tree, Bernoulli
NB, Multinomial NB, AdaBoost, and SGD. Dataset separated to training dataset with
70% of the original dataset with balancing of clean and Shellcode data that we have
we stopped using cross validation because of the large of the data and it take long time

in training while substituting the features.
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Figure (4.2): The Proposed Solution
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4.2. Dataset

We start searching for online benchmark dataset of buffer overflow shell codes.
Unfortunately, we could not find anything for this start, and we began emailing the
researchers who have published papers in the area of our research, and only one
professor responded with a negative response and told us that he does not have the
dataset, but we can regenerate it from the exploits engines. Then we changed our
direction to generate the dataset corpus ourselves, so we searched for all the engines
which can generate polymorphic no operation instructions. We found that their many
engines like CLET, ADMmutate, Metasploit-Single, and Metasploit-Opty2 (Zhao &
Ahn, 2013).

After more investigating and searching we discovered that ADMmutate generates
different 55 1-byte no operation, CLET can generate multi-bytes no operation. We
concluded that Metasploit had all the 55 NOOPS of ADMmutate and added on it 12
new single bytes no operation so we excluding ADMmutate engine and we also found
that CLET multi-byte included in the opty2 and excluded also.

Metasploit (single, opty2) engines used in generating the dataset, the steps employed

in this stage as following:

4.2.1. Generate Polymorphic NOOP Dataset

We created automation script illustrated in flowchart Figure (4.3) to create
Metasploit commands which can generate the no operation combinations of opty2 and
single byte. This code creates a file (generator.rc) that hold all the commands that
generate NOOP’s from 1 byte to 5000 bytes and on each length it generates 100
different combinations of NOOP’s so we have 5000* 100 = 500,000 command line
like the sample shown in Table (4.1).

Table (4.1): MSF Command Sample with Description

Use nop/x86/opty2; spool Desktop/nops/1000.nop; generate

Commands 1000 —t hex:
samples
generated Use nop/x86/single_byte; spool Desktop/nops/33.nop; generate

33 —t hex;
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Use nop/x86/opty?2 Use opty2 engine from

Metasploit
Use nop/x86/single_byte Use single byte engine from
Describe the Metasploit
commands .
spool Desktop/nops/1000.nop | Set the file that stores the
NOOP’s
generate 1000 —t hex Execute command to generate
1000 byte encoded to
hexadecimal.

We executed this resource script (commands file generator.rc) on Kali Linux which

has Metasploit installed by executing this terminal command

msfconsole —r generator.rc

After this command starts executed, this took to finish 160 hours and finally we have
500,000 files of polymorphic NOOP’s in different sizes from 1 byte to 5 KB and 2.6
GB of the whole size. This is sample record of NOOP’s in hex with length 30 bytes.

4e6bd547b22cheld15bbbf9325990c982d3f48h64090a8f8b5371c140441
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write("use nop/x86/opty2")

useno pfxBstignIE_hyt:]

True
Y

write("spool counter.nop”)

write("exit")

trys<100

True False

write("generate counter -t hex") counter++

trys++

Figure (4.3): Flow Chart of the script that generates polymorphic engine commands.

ol Lalu Zyl_ﬂbl
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4.2.2. Select Features from malicious Corpus

To select features from the polymorphic NOOP’s generated we need to
disassemble all the bytes that generated from the malicious Shellcode engines and get
the full instructions which represent all these bytes. We used Capstone Engine to
disassemble hexadecimal files to assembly then get the operation code of each

instruction, so we wrote a script to do this conversion as shown in the flow chart in

Figure (4.4).

import capstone
import unhex1lify

v

set folder path

file in folder

False |\ True

open file

False

Y

readlines()

line in lines

True

unhexlify(line)

X

set Capstone ARCH =86
Mode 32 bit

¥

open new_file

I In Capstone.disasm

alse True

new _file close

new_file.write(i.mnemonic)

Figure (4.4): Feature Selection from Corpus
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The procedure in Figure (4.4) read each hexadecimal files then convert to assembly
instructions of Intel 32 bit architecture. Then on the next steps we extract the operation
code only from the instruction line. This procedure take 3 hours to finish in execution
to convert 500,000 assembly file, so we get finally the NOOP’s dataset with size of
4.2 GB.

4.2.3. Create Clean Corpus

In order to do supervised classification, we need to create the second label to let
the method work. Here we need create clean data corpus with “clean” label for
classifier methods. We have been collected 120,000 files from different types such as
Movie clips, books, images, texts, docs, applications, binary libraries, DIl files, Etc.
The final size of these files was 3.7 GB. Then next step is to convert this clean files to
assembly and then select the features as we did with the malicious corpus, so we
created a new script which can convert binary data to assembly using Capstone Engine
as shown in flowchart Figure (4.5).

As description of the Figure (4.5) we have collected all the clean data paths and read
them in binary to provide them as input to Capstone Engine which processing this
binary data and convert them to assembly instructions then select the main features
that we need which is operation codes like what we did with NOOP’s data files before.

According to the most of the clean raw files -which was input to the system- does not
a CPU instruction so the Capstone Engine could not found appropriate instructions on
the 1A-32 that can be correlated with the bytes.

Finally, at this stage, we have a corpus of clean assembly operation code which has
size of 737 MB for 72,000 files.
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import capstone
import binascii

v

set folder path

file in folder

open file in binary

y

read file

v

convert to hex

v

set Capstone ARCH x86
Mode 32 bit

v

open new_file

i in Capstone.disasm

rue False

new_file.write (i.mnemonic) new file close

Figure (4.5): Generate clean corpus from clean files
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4.2.4. Dataset sample

In this section shows table which describe sample of the dataset and the dataset
representation (weighing) model and show how the decision tree will represent this
model to label the records to clean or malicious. Datasets used is length independent
and location independent on the byte sequence because of disassemble most shellcode
bytes in the packets, no matter where it is started, and the solution approach to moniter
data stream online so the length of packets or the location of the feature couldn’t be
known. The input matrix in the classification algorithm built depending on the next
formula which represent each node of the matrix in binary.

M. = {1, nis available in j record
n; 0, n is not available in j record

Where,
n is the index of feature in the features name header.

j is the index of feature records.

To give an example how is the formula working and how features input the model and
what is the output represintation in an example. In Table (4.2) listing four samples of
what is inputing to the system with labeling on each of this sample records that will be

converted to boolean weighing matrix.

Table (4.2): Four Samples of Dataset

({and, dec, jg, xor, sub, mov, jge, jl, jecxz, add, adc, lahf, xchg, jae, jno, loop, cmp}, ‘clean’)

({and, lea, dec, inc, sub, salc, mov, shb, jecxz, add, test, adc, jg, das, xchg, xor, cwde, or, cmp}, 'clean’)

({and, lea, jnp, inc, stc, jp, mov, cwde, jo, das, xchg, jg, dec, aad}, ‘malicious’)

({iins, and, xor, sub, stc, mov, js, clc, rcl, jbe, xchg, mul, jg, jno, inc}, ‘malicious")

Next step is collecting all the features (instructions) occurs in the samples and get each
feature only once (as we do not care to the order of the feature according to the reason
mentioned in this section) without repeating from all of the samples that act as input
to the system so it will appear as output of the above four samples as shown in Table
(4.3) this features indexed according to the position where it is placed to act as matrix

header.
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Table (4.3): Feature names header

aad,adc,add,and,clc,cmp,cwde,das,dec,inc,jae,jbe,jecxz,jg,jge,jl,jno,jnp,jns,jo,jp.js.lahf,lea,loop,mov,mul,or,rcl

,salc,sbb,stc,sub,test,xchg,xor

In this step after list all the features, need to transfer features to Boolean matrix by
checking each feature in the feature names header is available or not, and if it is

available in the sample it will be replaced with 1 and if not with 0 according to the

formula.

Table (4.4): Matrix of Boolean Weighing of Four Example Records
011101001010111110000010110000001011
011101111100110000000001010101101111
100100111100010001011001010000010010
000110000101010010100100011010011011

In Table (4.4) binary matrix represented which act as the input to the classification
algorithm that result by applying the previous formula with respect that the first two
samples are clean label and the other malicious label. By using this sample matrix as
input matrix for Decision tree algorithm to build the decision tree model that allow
seeing the output visually. The result of this four records can be seen in Figure (4.6)
which it classify two of them to malicious and the other two to clean. The tree shown
in Figure (4.6) produced from the matrix in Table (4.4) using partitioning the examples
recursively by choosing one attribute each time to find the best attribute installed in
the root, then split data and find the best attribute in each node, then repeat this stage
until all node are pure and the nodes contains fewer cases. By applying this building
tree strategy on the matrix in Table (4.4) found that aad not fitting the best node at
root. So, continue to the next adc to find it can classify all the samples from the next
nodes as the first and the second samples have 1 and the other two have 0 this mean
any sample that contains adc is a clean sample and malicious otherwise. This can be
represented by classification rules like (If adc <=.5 then label=malicious otherwise
label =clean). In conclusion of that the algorithm stops because it classify all the
records with minimal nodes. Explaining about attribute Gini in the tree is a measure
of how often the chosen element would be incorrectly labeled in each node. So, it
reaches its minimum (zero) when all cases in the node fall into a single target label.
The nods are not too many in the proposed example because of the samples is too little.

The nods increasing as well as the records are increasing so the output model of 28
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samples as another example as shown in Figure (4.7) have more nodes and so on in
large dataset.

adc=0.5
gini=0.5
samples = 4
value = [2, 2]
class = clean

Figure (4.6): Output Representation of Decision Tree Applying on the four Samples

jne<05
gini=0.5
samples = 28
value = [14, 14]
class = clean

sar=05
gini=0.5
samples =2
value =[1, 1]
class = clean

gini=0.5
samples =2
value =[1, 1]
class = clean

Figure (4.7): Decision Tree Model for Twenty eight Samples
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4.3. Classification Procedures

To do supervised classification we need training data for the different
classification algorithms to produce the model that can identify the related patterns
between each class label then, we need testing data that we will apply the model to
evaluate how is this model is correct by using different metrics like accuracy, recall,

precision, and F-measure.

We have prepared in the dataset section the two labeled (clean, malicious) datasets to
add them as input to the classification process. We have separated each data set from
the two label’s to 70% of data as training data for each and 30 % of data for testing the
model. The 70% of malicious data is larger than the clean, so to achieve equality
between clean and malicious dataset’s we have shuffled all the malicious dataset
randomly and separate 70,000 records from the original, and we have second reason
to get 30% of the malicious corpus is to reduce the time of processing in different

classification stages.

4.3.1. Preprocessing

On the first part of doing the classification is to refining and polishing the corpus
besides doing shuffling, getting a small piece of the dataset, labeling the sets and
combine the 70% of training data together from clean and malicious and finally
combine the testing sets with each other. Figure (4.8) show a flowchart for the
preparation for classification. As show we are importing libraries and classifiers, then
load the corpus data using lazy loader because of significant data, also configure the
lazy loader to get the dataset files from two folders named as “clean” and “malicious.”
After that we continue to shuffle the corpus and getting 70,000 from the malicious
corpus, then labeling each data record with its appropriate label. In addition to all of
that, we get 70% of each of the two datasets and combine them like training data and
get the 30% as testing data. The last step is to pass this data to a procedure to let any

Classifier algorithm to process this data.
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impaort B
nitk.classify scikitlearn.SklearnClassifier
sklearn.naive_bayes. BernoulliNB
sklearn.svm
sklearn.linear_model 5G DClassifier
sklearn.naive_bayes. MultinomialN B
sklearn.naive_bayes. BernoulliNB
sklearn.ensemble AdaBoostClassifier
sklearn.tree.DecisionTreeClassifier
ttk.metrics scores

7
£

Z

Load corpus

#l:lean + malicious

shuffling malicious and Clean

v

get 70,000 of malicious

v

label two lists

v

train features = .7 clean + .7 malicious

v

.3 clean+ .3 malicious

v

call Classifiering{ Classifier objec )

test features

Figure (4.8): Corpus preparation
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4.3.2. Classification process implementation

We have created a procedure which accepts as input any classifier algorithm
implementation class which SKLEARN provided on its library package. In this stage
we continue processing the data after we finished from preprocessing it, so we have a
dataset for training ready and dataset for testing ready. Figure (4.9) shows our function
in flowchart which can describe the flowchart as the following steps:

e The function has parameters to accept the Classifier method, training dataset,
and testing dataset.

e Initialize the Classifier method with the different parameter variables which
the algorithm deals with.

e Train the classifier method to get the model that we need to test.

e Compute the execution time of the training data processing.

e Test the trained model with the testing dataset.

e Compute the execution time of model test process.

e Compute the accuracy of testing model process results.

e Create reference set with originally labeled set and compute each feature of the
testing data label using the trained model; to pass these two sets in the different
evaluation metrics.

e Compute evaluation metrics (Precision, Recall, and F-measure) for the clean

and malicious tested on the model.

Separating the assessment for each label from a security perspective to know how
is the solution is efficient in detecting the attacks and know the rate of false alarm

which is clean.

We used the described flowchart in Figure (4.9) to evaluate many classification
algorithms to find the best method that support our solution from security point of
view, these algorithms which we compared between were Support Vector
Classification (SVM), Stochastic Gradient Descent (SGD), Multinomial Naive
Bayes, Bernoulli Naive Bayes, AdaBoost classifier, and Decision Tree (DTSs).
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Figure (4.9): Classification training and testing processes and compute evaluation
metrics

4.4, Summary

We have searched for a benchmark dataset to apply the proposed solution with; but we
had not succeeded, so we have generated the dataset of the clean and malicious by
ourselves and used the op-code of the NOOP’s as feature selection. Next, we
developed a script that allowed us to use the classification algorithms which
implemented in the Scikit Learn library. We utilized in the script the shuffling then do
generate the model of the classifier from training dataset then test this model, after that

we compute all the performance metrics which we got it from the confusion matrix.
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In this chapter, we are listing experimental environment, all the tools we have used
to finish the work in this research besides explaining difficulties that faced us in the

research, and classification settings we used.

Then viewed all the experimental results that we have performed on five classification
algorithms. Finally, compare evaluation metrics that represented from the confusion
matrix to choose the appropriate algorithm which can fit the best of security solution

to apply it to our solution.

5.1. Experimental Environment

We have used Virtual Windows 7 64-bit, a processor with 2.5GHz quad-core Intel
Core i7, RAM memory 10036MB, with 57GB of SSD hard Drive.

5.2. Experiments and Results

5.2.1. Experiments

We started the experiments on the previously mentioned environment and
classification settings. Table (5.1) illustrate the results of all experiments done with
SVM, SGD, Multinomial NB, Bernoulli NB, Ada Boost, and Decision Tree and shows

the results of different metrics like accuracy, recall, precision, and f-measure.
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Table (5.1): Performance results
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5.2.2. Comparing Results

Table (5.2): Experiments training time for all classification algorithms

TrainingTime (S)

10
9
8
7
6
5
4
3
2
1
0 Multinomial
SVM SGD NB BernolliNB = Ada Boost Decision Tree
H Training Time 3.968 3.047 2.812 2.7039 9.28 3.233

B Training Time

Execution time results of building models from the algorithms processes listed in Table
(5.2). From this chart we can deduct that Bernoulli Naive Bayes and Multinomial
Naive Bayes are the quickest methods in contrast of AdaBoost is the slowest in
creating the learning model by training the different methods. By the way, training
time does not benefit | real use, so we could not depend on this metric as this would

not be useful for us from security perspective nor let us choose the best here to get

more successful results.
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Table (5.3): Experiments testing time for all algorithm models

Testing Time (s)

1.8
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
0 Multmomlal Decision
BernolliNB = Ada Boost Tree
H Testing Time (s) 1.734 1.389 1.391 1.671 1.578 1.405

M Testing Time (s)

Execution time results for testing models generated from the different classification
algorithms listed in Table (5.3) From the network security point of view we consider
not affecting the data rate flow in the network when applying the classification model
for instances at real time; So testing time is crucial as the detection system of
polymorphic NOOP’s will be on network flow so need not make this process take a
long time when applying the classification on single instances. Founded that the results
for all methods acceptable which we have at most 1.734 seconds to identify more than
150 MB of network data as malicious or clean. This indicates for the high speed result
when applying the classification model on single packet instead mass of data in real
environment. We have Multinomial Naive Bayes, and SGD is the fastest and SVM is
the slowest. This metric give us a view about the speed when classifying mass of data

and that indicate that classifying single instance will be very fast.
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Table (5.4): Accuracy of experiments results

100.00%

90.00%
80.00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%
0.00% - L
SVM SGD

Multinomial BernolliNB Ada Boost Decision
NB Tree

W Accuracy 94.92% 93.99% 94.33% 93.66% 94.08% 93.33%
M Error rate 5.08% 6.01% 5.67% 6.34% 5.92% 6.67%

W Accuracy M Error rate

Accuracy = 0 an (5.1)
Y = TP+TN+FP+FN |

Using equation ( 5.1) the confusion matrix accuracy, we can compute the accuracy of
each classification algorithm. This evaluation evaluates the methods employed on
training by representing how accurate is it and what is the ratio result. We found all

the six methods have high accuracy with greater than 93% results.

Results in Table (5.4) gives us a good impression that our solution and features we
selected to give best results against detecting polymorphic buffer overflow vector
attacks. Precisely we can see that SVM is the best accuracy results with 94.9%.
Computing error-rate for all of algorithms result that SVM has the smallest error rate

with nearly 5%.
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Table (5.5): Precision of experiments result

PRECISION

B Malicious H Clean

0.9944

0.9616

0.9482

I 001217
I 0.99268
_ 0.9645
I 0.9093
I 0.0678
I 09193

0
—
o
9

0 (=)

—

o

()]

o |

SVM MULTINOMIALNB BERNOLLINB ADA BOOST DECISION TREE

o I 09119

Precision = L 5.2
~ TP +FP 62)

Evaluating the malicious rate that correctly predicted by the system from overall
system prediction computed using equation (5.2) (precision computation from
confusion matrix). We can see in Table (5.5) the method of ADA BOOST has the
highest value with 92% correct prediction precision and the others have greater than
90% in precision predicting the malicious label. On the other hand, we found that SVM
and Multinomial Naive Bayes have the highest rate with 99.2% with 99.4%
respectively in the correct predicting precision of clean label. SVM predict eight clean
from each 1000 files as malicious data which is a little bit small rate for the false alarm.
Also, on Multinomial NB we have six false alarm from 1000 packets in our

experiments.
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Table (5.6): Recall of experiment results

)
™
©
a
o

RECALL

B Malicious H Clean

~
a
o

0.99333

I 0.99126

I 03916

n
@
=}

I 0.9166

)
0
i
@
=}

I  0.905
I 0.5066
I 0.9033

©
©
©
o
S
S

SVM GD MULTINOMIALNBBERNOLLINB ADA BOOST DECISION TREE
TP
Recall = —— (5.3)
TP + FN

The rate of correctly malicious prediction from all of real malicious calculated from
this equation (5.3) (Recall computation from confusion matrix). We can see in Table
(5.6) that Decision Tree is the lowest rate in sensitivity detecting the malicious data
with rate 95% and the other methods with a high rate greater than 96%. So we found
that the engines models can sensitively identify most of the relevant malicious
documents. This evaluation is critical, and we are using it as the first factor which
results that SVM can detect 99.3% of the real malicious data as we take care to not
miss any malicious packets in contrast of getting false alarm when there is no attack
because | need to stop the real attack.
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Table (5.7): F-Measure evaluation result from confusion matrix

F-MEASURE

B Malicious H Clean

—

O

<

9

o
~
o0
[5a)
a
o

SVM SGD MULTINOMIALNB BERNOLLINB ADA BOOST DECISION TREE

0.9402

I  0.05131
I 094681

I 00344
I 0.o:21
I, 09394
I, 00344
I 09322

I, 09385
I 09347

precision - recall

Fi=2 (5.4)

precision + recall
We determined the overall performance quality of the classification algorithms by
combine precision and recall in harmonic mean which computed by equation ( 5.4)

(Compute f-measure evaluation metric from labeled precision and recall) we found

that all the engines have excellent high rate results except Decision Tree as shown in
Table (5.7).
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5.3. Summary

From the security perspective, we need to choose the best classifier method,
which produces results with the highest rate of correctly predicted from real overall
results. That means we are looking for the sensitivity (Recall) of the algorithm, so we
are depending on malicious RECALL evaluation in choosing the classifier method as

the factor.

From experiments, which we have applied we got the evaluation results as shown in
the charts. According to the factor which we depend on (the RECALL as we
described), we found that SVM method scores high result with Recall rate is 99.3% in
classifying the malicious packets. It fails on classifying clean data with ten samples in
each 100 samples with a rate of 90.5%. This result means there is slight malicious can
pass from SVM model, but we have a percentage of a false alarm which classifies
clean data as malicious and this rate 9.5% so we see it can be acceptable rate and need
to be improved in this stage as we care for not allowing any malicious packets to be

pass.

To support our selection also SVM has the highest accuracy beside high precision.

Also, the F-measure is very high.

Overall we choose SVM as the main classifier method for our solution according to

the factor we chose as evaluation metrics.
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Chapter 6
Conclusion and Future
Work
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In this research, we demonstrated how much is the buffer overflow is danger and
how hackers can be employing the weapons of polymorphic Shellcodes to hack the
systems and bypass security that can catch Shellcodes. Also, we mentioned about
Intrusion detection systems and how they depend on signatures and how polymorphic
Shellcodes can pass. We described other researchers solutions, which have different
types of analysis trying to detect and prevent buffer overflow such as instruction
frequency analyzer, or assuming packets is data and could not have instructions, or
encrypt buffers with XOR, or by analyzing n-gram disassembly ..., etc.; we illustrated

the defects in the related work and how can hackers bypass these solutions.

We worked on a new solution using data mining classification. This solution depends
on the idea of getting the op-code of the CPU Intel architecture instruction sets for the
polymorphic sled NOOPs of 32-bit and applying the classification on it. Only that can
detect Buffer overflow polymorphic vector attack on network level before the
Shellcode can conduct the victim host. Our solution depends on a self-generated
dataset from Metasploit polymorphic NOOPs engines. We applied different
classification algorithms on the dataset to get the perfect method that can deal with our
problem. Solution experiments illustrated high accuracy in detecting malicious data on
the network with low false alarm for most of the algorithms we used. We chose SVM
as the best classification algorithm that can handle this issue because of it has 94%
accuracy and getting 99.33% of malicious recall metrics and the low false alarm we
get. Our solution shows significant results comparing against signature based on
SNORT IDS which we compared against 1000 packets of polymorphic Shellcodes. By
activating the latest Rules available on SNORT site. It can detect 502 packets of 1000
packets as a harmful packets with rate of 50.2%, on the other hand, our solution detects

most of this packets with a near rate of 94% in this comparison experiment.

We are looking as future work to implement our solution as a plugin on SNORT IDS,
to allow the solution work on the real environment. These will protect users and
networks from the effectiveness of buffer overflow vulnerabilities. Also, we are
looking to make the prediction of data type speeder with reducing the false alarm that
system shows. Beside that we are looking to extract a new type of feature that can help

in speeding the classification and give higher results in the evaluation.
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Appendix (1)

UNREGISTERED

msf_cmd_generate.py

file_handler = open ("generator.rc","w")
file_handler.write("use nop/x86/opty2\n")
file_no range(1590,5000) :
spool = "spool Desktop/nops/%s.nop\n" (file_no)
file_handler.write(spool)

try_no range(1,100):
txt = "generate %s -t hex\n" % (file_no)
file_handler.write(txt)

file_handler.write("exit\n");
file_handler.close()

E Line 1, Column 1 Tab Size: 4

UNREGISTERED
converter_to_asm.py

glob

re

0s

capstone
binascii unhexlify
r = re.compile("\[@m(.%?)resource")
path = 'c:/nops-5356-4999/"
filename glob.glob(os.path.join(path, '*.nop')):

open(filename) \ir
lines - f.readlines()
line lines:

m - r.search(line)
m

CODE - m.group(1)

CODE = unhexlify(CODE)
md = Cs(CS_ARCH_X86, CS_MODE_32)
head, tail = os.path.split(filename)
new_file 'c:/nop_asm/%s/%s '%(tail, lines. index(line))
os.path.exists(os.path.dirname(new_file)):
os.makedirs(os.path.dirname(new_file))
file_handler = open(new_file, 'w')
i md.disasm(CODE, 0x1000):

file_handler.write(i.mnemonic '\n')
file_handler.close()

El Line 32, Column 15 Tab Size: 4
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. UNREGISTERED

converte_clean_to_asm.py

glob
re
0S

capstone
binascii
Ssys

path ‘c:/clean-data/’'

root, subFolders, files os.walk(path):

filename files:
open(os.path.join(root,filename),"rb")
CODE - f.read()

CODE = binascii.hexlify(CODE)

("##ERROR: %s " “sys.exc_info()[0])
md = Cs(CS_ARCH_X86, CS_MODE_32)
md.detail = True

head, tail - os.path.split(filename)
new_file 'c:/clean_asm/%s.asm'%(tail)
os.path.exists(os.path.dirname(new_file)):
os.makedirs(os.path.dirname(new_file))

file_handler = open(new_file, 'w')

i md.disasm(CODE, 0x1000000):
file_handler.write(i.mnemonic + '\n')
CsError H
("ERROR: %s %s" %(e,f))
file_handler.close()

E Line 30, Column 33 Tab Size: 4
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UNREGISTERED

Final_classifier.py

nltk.classify.util

nltk.classify
nltk.classify.scikitlearn SklearnClassifier
sklearn.svm SvC
sklearn. linear_model SGDClassifier
sklearn.naive_bayes MultinomiaNB
sklearn.naive_bayes BernoulliNB
sklearn.ensemble AdaBoostClassifier
sklearn.tree DecisionTreeClassifier

time
nltk.corpus.util LazyCorpusLoader
nltk.corpus. reader

collections
nltk.metrics scores

random

dataset - LazyCorpusLoader(

'nops', CategorizedPlaintextCorpusReader,
r'(?21\.).#\.txt', cat_pattern=r'(clean|malicious)/.*")

def word_feats(words):
dic - {}
word words:
dic[word] True
dic

cleanids - dataset.fileids('clean')
maliciousids - dataset.fileids('malicious')

random. shuffle(maliciousids)
maliciousids = maliciousids[:150000]
maliciousfeats = []

f maliciousids:

maliciousfeats.append((word_feats(dataset.words(fileids-[f])), 'malicious'))
Exception, exc:
f + str(exc)
random. shuffle(maliciousfeats)
cleanfeats - [(word_feats(dataset.words(fileids-[f])), 'clean') cleanids]
random. shuffle(cleanfeats)

cleancutoff - len(cleanfeats) « 7 / 10
maliciouscutoff = len(maliciousfeats) + 7 / 10

trainfeats - cleanfeats[:cleancutoff] + maliciousfeats([:maliciouscutoff]
testfeats - cleanfeats([cleancutoff:] + maliciousfeats[maliciouscutoff:]

E Line 19, Column 1 Spaces: 4
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Final_classifier.py

def classifiering(title,c sy):
'Classification with %s train on %d instances, test on %d instances' (title, len(trainfeats), len(testfeats))
method - SklearnClassifier(classy)
start_time - time.time()
classifier - method.train(trainfeats)
'Excution (Training) Time: ', time.time() - start_time
start_time - time.time()
accuracy - nltk.classify.util.accuracy(classifier, testfeats)
'Excution (Testing) Time: ', time.time() - start_time
'accuracy:', accuracy
refsets - collections.defaultdict(set)
testsets - collections.defaultdict(set)
i, (feats, label) enumerate(testfeats):
refsets[label].add(1i)
observed - classifier.classify(feats)
testsets[observed] .add(i)
'malicious precision:', scores.precision(refsets['malicious'], testsets['malicious'])
'malicious recall:', scores.recall(refsets['malicious'], testsets['malicious'])
'malicious F-measure:', scores.f_measure(refsets['malicious'], testsets(['malicious'])
‘clean precision:', scores.precision(refsets['clean'], testsets['clean'])
'clean recall:', scores.recall(refsets['clean'], testsets['clean'])
‘clean F-measure:', scores.f_measure(refsets['clean'], testsets['clean'])

classifiering('SwM’',SVC())
Exception, exc:
"SWM SVC"+str(exc)

classifiering('Linear Model SGDClassifier',SGDClassifier())
Exception, exc:
“Linear Model SGDClassifier":str(exc)
classifiering('Naive Bayes MultinomialNB',MultinomialNB())
Exception, exc:
"Naive Bayes MultinomialNB"+str(exc)

classifiering('Naive Bayes BernoulliNB',BernoulliNB())
Exception, exc:
"Naive Bayes BernoulliNB":str(exc)
classifiering('Ensemble AdaBoostClassifier',AdaBoostClassifier())
Exception, exc:
"Ensemble AdaBoostClassifier":str(exc)
classifiering('DecisionTreeClassifier',DecisionTreeClassifier())
Exception, exc:
"DecisionTreeClassifier"+str(exc)

4 Line 48, Column 26 Spaces: 4
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