
www.manaraa.com

Detecting Polymorphic No Operations in

Shellcode Based on Mining Techniques

 مليات الفارغة متعددة الأشكال فيالعكشف
Shellcode اعتماداً على تقنيات تنقيب البيانات

Fady Riad Al-Khateeb

Supervised by

Dr. Tawfiq Barhoom

Associate Professor – Applied Computer Technology

A thesis submitted in partial fulfilment of the requirements for the degree of

Master of Information Technology

September/2016

 زةــغ – ةــلاميــــــة الإســـــــــامعـالج

 شئون البحث العلمي والدراسات العليا

 تكنــولوجـيـــا المــعلــومــاتة ليــــــك

 تكنــولوجـيـــا المـعلــومــاتماجستير

The Islamic University–Gaza

Research and Postgraduate Affairs

Faculty of Information Technology

Master of Information Technology

www.manaraa.com

 إقــــــــــــــرار

 أنا الموقع أدناه مقدم الرسالة التي تحمل العنوان:

Detecting Polymorphic No Operations in

Shellcode Based on Mining Techniques

 نليات الفارغة متعددة الأشكال فيالعكشف
Shellcode اعتناداً على تقنيات تنقيب البيانات

باستثناء ما تمت الإشارة أقر بأن ما اشتممت عميو ىذه الرسالة إنما ىو نتاج جيدي الخاص،

إليو حيثما ورد، وأن ىذه الرسالة ككل أو أي جزء منيا لم يقدم من قبل الآخرين لنيل درجة أو
لقب عممي أو بحثي لدى أي مؤسسة تعميمية أو بحثية أخرى. وأن حقوق النشر محفوظة

 فمسطين- لجامعة الإسلامية غزة

Declaration

I hereby certify that this submission is the result of my own work, except

where otherwise acknowledged, and that this thesis (or any part of it)

has not been submitted for a higher degree or quantification to any other

university or institution. All copyrights are reserves toIslamic University

– Gaza strip paiestine

 :Student's name فادي رياض الخطيب اسم الطالب:

 :Signature فادي رياض الخطيب التوقيع:

 :Date 00/12/2012 التاريخ:

www.manaraa.com

www.manaraa.com

II

Abstract

Buffer Overflow (BOF) ranked as the most dangerous vulnerability; its attacks become

more powerful and destroyable by remote code execution (RCE) of the Polymorphic

Shellcode. Shellcode acts as a weapon to perform BOF. It consists of three sections

that always transforms its parts to be Polymorphic Shellcode.

Solutions available from Intrusion Detection Systems (IDS) still depend on the

signature, so polymorphic and unknown Shellcodes could not be detected. There also

researches on this hot topic that adds techniques to prevent BOF like simulation, search

for the return address, and encrypt buffers. As a result of cyber criminal’s attempts and

efforts they bypassed these technologies.

We proposed a new solution using data mining classification technique; which can

classify the packets on the transport layer of the network as clean or buffer overflow

Shellcode attack. This solution can detect unseen Shellcodes.

We have generated a dataset for malicious consist of 500,000 files from Metasploit

engines and 72,000 files of a clean dataset from various types of data.

By applying different classification methods on our datasets which include selected

features we specified and evaluating it by evaluation metrics; show that we have

achieved high accuracy results with rate 94%. In contrast of signature based on

SNORT IDS which we activated in it the latest rules to detects only 50.02% of

polymorphic Shellcodes in the experiment we did to compare our solution with real

IDS system. For different security reasons we have selected SVM as the method we

depend on because of the malicious recall rate of 99.33% in detecting polymorphic

NOOP’s with low false alarm.

Keywords: Shellcode, Buffer Overflow, No Operations, Polymorphic, Remote

Code Execution.

www.manaraa.com

III

 الملخص

ثر الهجمات الالكترونية خطورة, وتكون على انها اك Buffer Overflowتصنف هجمات
 shellcodeخبيثة عن بعد من خلال تعليمات برمجيةهجماتها قوية ومدمرة من خلال تشغيل

 Bufferبمثابة السلاح الذي يؤدي لحدوث هجمات ال Shellcodeتعتبرالمتحولة.

Overflow ل ث قطاعات رييسية متحولة لتكون اوهي تحتوي على ثلاShellcode .المتحولة

الحلول المتاحة من أنظمة كشف التسلل لا تزال تعتمد على التوقيع، لذلك لا يمكن أن يتم الكشف
متعددة الأشكال وغير المعروفة. هناك أبحاث أيضا حول هذا الموضوع الساخن shellcodeعن

ع في مثل المحاكاة والبحث عن عنوان الرجو Buffer Overflow الذي يضيف تقنيات لمنع
 دالإلكتروني والجهو الهجوم. ونتيجة لمحاولات البيانات في الذاكرة العشوايية الذاكرة وتشفير

 تجاوز هذه التقنيات. فقد تم المبذولة من قبل الهاكرز

ن خلال تصنيف م؛ والتي يمكن التصنيف في تنقيب البيانات اقترحنا حلا جديدا باستخدام تقنية
 الكشف هكن. هذا الحل يمعلى انها بيانات نظيفة او بيانات خبيثة كةالبيانات المارة في الشب حزم
 .المتحولة والغير معروفة مسبقا Shellcode عن

 و Metasploit محركمن ملف 055،555من تتكون مجموعة بيانات خبيثة قمنا بانشاء لقد
هذه الملفات من الملفات, وقد تم جمع 00،555أيضا انشينا مجموعة بيانات نظيفة تتكون من

 .النظيفة من انواع بيانات مختلفة

محددة البيانات لدينا والتي تشمل الميزات ال مجموعتيعلى متعددةتطبيق أساليب تصنيف قمنا ب
التي قمنا بتحديدها. من خلال التقييم بجدول مقاييس التقييم تبين ان الحل المطروح حقق نتيجة

 SNORTالانظمة التي تعتمد على التوقيع مثل لفي المقابو ؛%49عالية في الدقة بنسبة
فقط كتشف استطاعت ان ت وغيرها من التقنيات SNORTلنظام كاملةالقواعد الومع تفعيل

 SVMخوارزمية شكال. لأسباب أمنية مختلفة اخترنامتعددة الأShellcode من 05.50%
في كشف %44.33الية تقدر ب بأن تكون الخوارزمية الاساسية لحلنا لانها اعطتنا نسبة ع

العمليات الفارغة متعددة الاشكال مع الابقاء على نسبة منخفضة من الانذارات
 الخاطية.

www.manaraa.com

IV

Dedication

To my father and my mother, who have been credited to who I am.

To my family, my wife and my children dear.

www.manaraa.com

V

Acknowledgment

Many thanks and sincere gratefulness goes to my supervisor Dr. Tawfiq Barhoom,

without his guidance, and continuous supportive; this research would never be done.

Also, I would like to extend my thanks to the academic staff of the Faculty of

Information Technology at the Islamic University of Gaza who helped me during my

Master’s study. With particular thanks to Prof. Alaa El-Halees and Dr. Iyad Alagha

for the extensive knowledge, which I got that from them.

www.manaraa.com

VI

Table of Contents

Abstract .. II

Abstract in Arabic .. III

Dedication .. IV

Table of Contents ... VI

List of Tables ... IX

List of Figures .. X

List of Abbreviation ... XI

Chapter 1 Introduction ... 1

1.1. Introduction .. 2

1.2. Statement of the problem ... 4

1.3. Objectives ... 4

1.3.1. Main objective ... 4

1.3.2. Specific Objectives: ... 4

1.4. Scope and Limitations .. 5

1.5. Importance of Research .. 5

1.6. Methodology .. 6

1.6.1. Analysis: .. 6

1.6.2. Preprocessing: .. 6

1.6.3. Classification: .. 6

1.6.4. Results and Evolutions: ... 7

1.7. Solution on Real Environment ... 8

1.8. Thesis Organization .. 8

Chapter 2 Background .. 9

2.1. Buffer overflow vulnerability components .. 10

2.1.1. Buffer overflow.. 10

2.1.2. Shellcode .. 12

2.1.3. Polymorphic Shellcode .. 13

2.1.4. Worm ... 13

2.1.5. Remote Code Execution .. 14

2.1.6. Zero Day .. 14

2.2. Disassembly Engines .. 14

2.2.1. Libdasm ... 14

www.manaraa.com

VII

2.2.2. BeaEngine .. 15

2.2.3. Capstone Engine .. 15

2.3. Polymorphic NOOPs Engines .. 16

2.3.1. ADMmutate ... 16

2.3.2. CLET ... 16

2.3.3. Metasploit .. 16

2.4. Machine Learning Tools and Libraries .. 17

2.4.1. Scikit-Learn ... 17

2.4.2. Anaconda ... 17

2.5. Data Mining .. 17

2.5.1. Supervised and unsupervised ... 19

2.5.2. Data Mining Classifications methods: ... 19

2.1.1. Evaluation Methods ... 21

2.2. Dynamic, Static, and Hybrid Analysis ... 22

2.3. Summary .. 22

Chapter 3 Related Work ... 23

1.3. Static Analysis: ... 24

3.2. Dynamic Analysis: ... 27

3.3. Quantitative Analysis: .. 28

3.4. Hybrid Analysis:... 29

3.5. Comparative Analysis: ... 29

3.6. Previous Solutions and weakness: .. 30

3.7. Summary .. 32

Chapter 4 Proposed Solution and Methodology ... 33

4.1. Solution Steps ... 34

4.2. Dataset .. 37

4.2.1. Generate Polymorphic NOOP Dataset .. 37

4.2.2. Select Features from malicious Corpus ... 40

4.2.3. Create Clean Corpus .. 41

4.2.4. Dataset sample ... 43

4.3. Classification Procedures ... 46

4.3.1. Preprocessing ... 46

4.3.2. Classification process implementation .. 48

4.4. Summary .. 49

www.manaraa.com

VIII

Chapter 5 Experimental Results and Evaluation ... 50

5.1. Experimental Environment... 51

5.2. Experiments and Results .. 51

5.2.1. Experiments ... 51

5.2.2. Comparing Results ... 53

5.3. Summary .. 59

Chapter 6 Conclusion and Future Work ... 60

The Reference List ... 63

Appendix (1) .. 67

www.manaraa.com

IX

List of Tables

Table (1.1): Example of our input dataset files to the Classification model 7

Table (2.1): Confusion Matrix .. 21

Table (3.1): Related works and its weakness .. 30

Table (4.1): MSF Command Sample with Description ... 37

Table (4.2): Four Samples of Dataset.. 43

Table (4.3): Feature names header .. 44

Table (4.4): Matrix of Boolean Weighing of Four Example Records 44

Table (5.1): Performance results ... 52

Table (5.2): Experiments training time for all classification algorithms............................... 53

Table (5.3): Experiments testing time for all algorithm models ... 54

Table (5.4): Accuracy of experiments results ... 55

Table (5.5): Precision of experiments result ... 56

Table (5.6): Recall of experiment results .. 57

Table (5.7): F-Measure evaluation result from confusion matrix ... 58

www.manaraa.com

X

List of Figures

Figure (1.1): Top Vulnerability types with a high severity (Younan, 2013) 2

Figure (1.2): Solution steps ... 7

Figure (1.3): Solution Process in Real Environment .. 8

Figure (2.1): basic layout of stack with 64 character buffer called name (Bright, 2015) 11

Figure (2.2): Stack overflow with calculator Shellcode and return address replaced to point

on Shellcode (Bright, 2015) ... 11

Figure (2.3): OP Code (hex) representation of assembly instructions (Shellcode, 2016) 12

Figure (2.4): Shellcode structure (Shellcode, 2016) ... 12

Figure (2.5): Polymorphic Shellcode .. 13

Figure (2.6): Shellcode .. 13

Figure (2.7): Data mining process steps (Han & Kamber, 2005) ... 18

Figure (2.8): Decision Tree ... 20

Figure (4.1): Solution Steps .. 34

Figure (4.2): The Proposed Solution ... 36

Figure (4.3): Flow Chart of the script that generates polymorphic engine commands. 39

Figure (4.4): Feature Selection from Corpus .. 40

Figure (4.5): Generate clean corpus from clean files .. 42

Figure (4.6): Output Representation of Decision Tree Applying on the four Samples 45

Figure (4.7): Decision Tree Model for Twenty eight Samples ... 45

Figure (4.8): Corpus preparation ... 47

Figure (4.9): Classification training and testing processes and compute evaluation metrics 49

www.manaraa.com

XI

List of Abbreviation

ASLR – Address Space Layout Randomization.

API – Application Programming Interface.

AUC – Area under Curve.

BOF – Buffer Overflow.

CI – Code Injection.

CPU – Central Processing Unit.

DEP – Data Execution Prevention.

DOS – Denial of Service.

EBP – Extended Base Pointer.

ESP – Extended Stack Pointer.

FUD – Fully Undetectable.

IDS – Intrusion Detection System.

IA-32 – Intel Architecture 32 bit.

JMP – Assembly Instruction for Jump.

KDD – Knowledge Discovery in Database.

NOP – NO Operation Assembly Instruction.

NIDS – Network Intrusion Detection System.

RCE – Remote Code Execution.

ROP – Return Oriented Programming.

SVM – Support Vector Machine.

0day – Zero Day.

www.manaraa.com

1 Chapter 1

Introduction

www.manaraa.com

2

1.1. Introduction

Information Technology infrastructure is always suffering from various

vulnerabilities threats especially zero-day (0day) vulnerabilities which are the main

reason in destroying systems, leak information and cause financial destroy. Buffer

overflow is the most famous type of vulnerabilities which can hijack systems, execute

remote applications, and spread worms. In Figure (1.1) buffer overflow appears that it

is a high severity and serious vulnerability used in cyber-attacks with rate of 23%

throw 20 years. (National Institute Of Standards and Technology, 2014) (Younan,

2013) .

Figure (1.1): Top Vulnerability types with a high severity (Younan, 2013)

Buffer overflow performed by applying a vector attack which is called Shellcode.

Shellcode is an application that can execute remotely. It consist of three parts, the first

is the NOOP which has CPU instructions that don’t do anything except moving the

instruction pointer to the next address to execute it. The second part of Shellcode is

the payload which has the malicious application that attacks the systems and the last

section is the return sled which point on any segment of the NOOP section in the

Shellcode. NOOPS in usual has the hex representation of 0x90 but hackers use

alternative and equivalent instructions that can do nothing in CPU these NOOPs

alternatives called polymorphic NOOPs. This kind of attacks forced security

companies, and security researchers try to find the optimal solution that can protect

www.manaraa.com

3

systems from this vulnerabilities. Despite numerous contribution on this area, but there

is still no full solution that can protect and avoid systems from being hacked by buffer

overflow.

A buffer overflow caused because of bad programming practices used from

programmers by working with memory without boundary checking, so while writing

data to a buffer overruns the buffer’s boundary and overwrites adjacent memory

locations (Buffer overflow, 2016).

According to this issue, researchers start putting solutions by advising using alternative

programming languages that have built-in protection against accessing or overwriting

data in any part of memory (Buffer overflow, 2016). As C and C++ provides ability to

work with memory without checking buffers boundaries in writing. In consequence of

that, advised to stop using standard library functions and use safe libraries that check

boundaries (Spafford, 1988). Also, Microsoft provided application programming

interface (API) routine to use Point Guard. It implemented executable space protection

in the core of operating systems, created data execution prevention (DEP). Beside that

invented address space layout randomization (ASLR), and Return Oriented

Programming (ROP) prevent. Although of this efforts, hackers always find ways,

holes, and new techniques to skip this prevention technique. To date, most network

intrusion detection systems detect and prevent such attacks by identifying worms and

Shellcodes by using fixed byte sequence of signature which stored in the updatable

database of previously known worm’s payload (SNORT, 2016).

Concluding that there is no one solution for this threat but we need a package from

dozens of solutions which every solution solve one face from buffer overflow faces,

so researchers use static analysis by analyzing the source code and dynamic analysis

that analysis the applications on runtime. Their a point of view that looks at this

problem from another side by not working on the system itself but work on the network

level and identify the packets transferred in the network that causes buffer overflow

attack. In this area there lots of researches that detect and prevent the payloads on the

network; but as usual their techniques from hackers to evade this approaches.

Nowadays there lots of engines that produce encrypted Shellcodes like those in

Metasploit Framework (Rapid7, 2004), ecl-poly (Gushin, 2008), AdMutate (K2,

www.manaraa.com

4

2001), or CLET (CLETteam, 2003). By digging down into the structure of Shellcode,

there are main sections must be in the Shellcode to make the overflow success. Our

work takes NOOP sled section to identify the Shellcode while it is transferring in the

network, NOOP section can be consists of the large probability of useless instructions

which generated and obfuscated by Shellcode engines.

In this research, Data Mining algorithms used to be trained on features extracted from

the vast amount of polymorphic NOOPs in Shellcodes. This let the classifier knows

the patterns which identify this section of Shellcode. So our solution can alarm that the

system under buffer overflow attack.

1.2. Statement of the problem

IDS usually detects Shellcodes based on signature pattern and identify

Shellcodes through the identification of NOOPs. Attackers defect that by equivalent

instructions which act as NOOP (Polymorphic NOOPs).

Solutions have been deal with this problem (Polymorphic NOOPs). They based on

searching for NOOP equivalent instructions, and classify the frequency of instructions;

but still, they have the weakness to catch polymorphic NOOPs which they are suffering

from detecting the new one-byte equivalent NOOPs, new multi-byte NOOPs,

extensive features of instruction parameters, and the great combination of instructions

which do nothing.

Those weaknesses show that there is a problem on the daily new polymorphic NOOPs

generated.

1.3. Objectives

1.3.1. Main objective

The main purpose of this work is to propose a new solution based on Data

Mining techniques to detect unknown and polymorphic Shellcodes.

1.3.2. Specific Objectives:

 Get API of polymorphic payload engine generators to generate the corpus

automatically.

www.manaraa.com

5

 Generate Shellcodes from different engines and select features from

abstracted disassembled instructions used in NOOP section to build the

dataset.

 Develop a script that use data mining algorithm such as (Decision Tree,

SVM, etc.) classifier to use the dataset as input to classify the Shellcode.

 Testing and evaluating accuracy and performance metrics of our solution.

 Comparing the proposed solution against signature-based and rules of

SNORT IDS to measure that our solution is more powerful.

1.4. Scope and Limitations

 The approach use Intel Architecture 32 (IA-32) Shellcodes (Intel, 2003).

 The approach based on classifying the polymorphic NOOP sled.

 Many types of research work on the body or return sections, but our

proposed solution built on polymorphic NOOP sled section because of this

section available all time and have 256^n possibilities where n is the length

NOOP’s section.

 The dataset collected and generated from top polymorphic Shellcodes

engines.

1.5. Importance of Research

Systems, application, or legacy systems always suffer from buffer overflow

vulnerabilities which rank as high dangerous vulnerabilities (Younan, 2013). Which

can cause if not successful a Denial of Service (DOS), and if it fully success to execute

remotely worms and steal sensitive data.

This research helps network administrators to protect networks. The protection from

most harmful effects caused by remote code execution buffer overflow exploits on

their systems or on applications they used based on the detection solution we introduce

in the research.

www.manaraa.com

6

1.6. Methodology

In this section we demonstrate proposed solution that we looking forward to

apply for achieving our goal, listed as the following steps:

1.6.1. Analysis:

 Collect the most popular Shellcode engines of Metasploit which its architecture

is IA-32 like SINGLE-BYTE and OPTY2 engines so we can study and analyze

them.

 Create homemade payload that makes reverse shell on Windows system.

 Apply our payload on the zero-day exploit, so we create shellcode that includes

all the sections of Shellcode.

 The implementing script that applies automatic generation on the engines with

all possible parameters. So we can generate a significant amount of Shellcodes

that obfuscated and became polymorphic Shellcodes.

1.6.2. Preprocessing:

 Collect all Shellcodes samples and create a script that separates the NOOP-

sleds section from the core payload.

 Disassembly all the NOOP sections.

 Build dataset by feature selection of instruction without the operand

parameters; (this step act as pruning to allow the machine learning algorithm

detect coarse-grain patterns for encrypted NOOPs. By this, we can reduce the

size of input dimension, and reduce the unlimited alternatives that can be in the

parameters).

 Categorize the datasets according to the source engine label.

 Add clean data and applications files with labeling with a clean label.

1.6.3. Classification:

 Use classification model such as SVM, Decision Tree, etc. to train it with 70%

of the dataset with the balance of clean and Shellcode data that we have as we

see in Table (1.1) examples of input corpus files with its labels to be trained.

www.manaraa.com

7

Table (1.1): Example of our input dataset files to the Classification model

Clean XOR XOR SWAP Subtract Load ..

Malicious
Pop push swap call Jump ..

1.6.4. Results and Evolutions:

 Use the rest 30% of data set as testing to measure the accuracy of detection

solution with balancing the clean and Shellcode.

 Test new unknown Shellcodes against the classifier model to know the

accuracy and true positive rate in detecting new unknown Shellcodes.

 Evaluate this solution against the false-positive rate that alarm (annoying) users

without any actual threat.

 Compare our results with signature-based solutions.

 Compute the performance metrics of confusion matrix.

 Evaluates performance in network data processing by identifying how large is

data processed per second to identify reliability.

Figure (1.2): Solution steps

•Engines

•generate shells and
collect benchmark set

analysis

•separate NOOP
section

•dissassyembly

•opcode seprate

•dataset

Preprocessing

•Data Mining Methods

Classification

•testing

•evaluation metrics

•performance

Evaluation

www.manaraa.com

8

1.7. Solution on Real Environment

We are taking in consideration this solution steps is experimental. So we are

planning how this solution be applicable on the real networks. We will use SNORT as

it’s an open source IDS and integrate it with a plugin that will get the stored

classification model and apply it on the network packet instance and identify the

packets as malicious or clean as show in Figure (1.3).

Figure (1.3): Solution Process in Real Environment

1.8. Thesis Organization

The thesis divided into six chapters, chapter one includes the introduction;

chapter two provides Theoretical Background, chapter three provide the related work

of detecting polymorphic NOOP’s researches; Chapter four provides the description

of the proposed methodology including dataset generating with feature selection,

chapter five illustrate the results of experiments with the analysis. Future work listed

in chapter six.

IDS Plugin

stored
calssification

model

N
et

w
o

rk

fl
o

w

www.manaraa.com

2 Chapter 2

BACKGROUND

www.manaraa.com

10

In this chapter we are reviewing buffer overflow with the attack components to

understand how this attack performed with polymorphic Shellcode besides how worms

use the remote code execution to propagate. Later we are talking about disassembly

engines and how it convert hexadecimal to assembly instructions, then we review the

different types of polymorphic NOOPs engines that can generate polymorphic

instruction NOOPs. Also, describe the libraries used in the different stages of this

research, later we reviewed the data mining and the methods used in classification

beside performance evaluation.

2.1. Buffer overflow vulnerability components

In this section we are illustrating the buffer overflow and how it performed in the

memory. Also, described Shellcode structure and how it be polymorphic. Finally

describe what is remote code execution and zero day’s vulnerability and how malware

used them to perform the attacks.

2.1.1. Buffer overflow

It is a strange issue while the program writing data to a buffer overruns the

buffer's boundary and overwrites adjacent memory locations. This is a violation of

memory safety (Buffer overflow, 2016).

When program executed, it represents in the memory especially in the stack as

shown in

Figure (2.1). It is the representation of an array of characters indicating the address

of stack pointer(esp), the address of the base pointer(ebp), and return address that

points to the address of the caller of this function. In case there is no boundary

check in the program, and we need to write data to the name buffer, and this data

is larger than the buffer size it will overwrite the return address, so the application

will corrupt when the execution search for the new address and couldn’t find it. So

Hackers exploited this vulnerability by populating this buffer with binary

application and following it with address of where this binary payload located, the

buffer looks like Figure (2.2)

www.manaraa.com

11

Figure (2.1): basic layout of stack with 64 character buffer called name (Bright, 2015)

Figure (2.2): Stack overflow with calculator Shellcode and return address replaced

to point on Shellcode (Bright, 2015)

www.manaraa.com

12

Populated with Shellcode of any payload, for example, a Calculator and overwrite the

return address to a point to the payload start. The used attack technique called

“trampolining” which used to put the representation hexadecimal of “jmp” instruction

in the return address. This is one face of applying the BOF to let us understand how it

exploited.

2.1.2. Shellcode

Figure (2.3): OP Code (hex) representation of assembly instructions (Shellcode, 2016)

A small piece of code used as payload in the exploitation of software vulnerability.

The name “Shellcode” because it typically starts a command shell to allow the attacker

controlling the compromised machine (Shellcode, 2016). Shellcode is the

hexadecimal representation of the CPU instructions as in Figure (2.3).

To use Shellcode in exploitation, it must include three sections 1- NOOP Section. 2-

Payload Section 3- Return Address Section. As shown in Figure (2.4).

Figure (2.4): Shellcode structure (Shellcode, 2016)

N
O

P NNNNNN Sh
el

l

SSSSSSSSS

R
et

u
rn

ad

d
.

RRRRRR

www.manaraa.com

13

The most important part in the Shellcode which required to let the exploit work is the

return address, this return address points to the stack frame that includes the Shellcode

itself to let the CPU execute the payload. While this RETURN addresses points on the

stack, it may point to any part in the middle of the Shellcode on the stack. It is

representing programs in the stack, and it is variant from computer to another computer

then we need to use useless CPU instructions section that forward the execution to the

real payload that controls the system because the return address will point to unknown

specific place inside the NOOP section.

2.1.3. Polymorphic Shellcode

Figure (2.5): Polymorphic Shellcode

It is the same Shellcode but with changes which consist of an encoded payload

and it include the decoder on its body to decode the payload while execution as shown

in Figure (2.5). Also, it has polymorphic NOOP section which consists of 1-byte,

multi-byte of useless operations which act like NOOP instruction (0x90). There are

lots of engines that apply dozens of techniques on the Shellcode to make fully

undetectable (FUD) from antivirus and firewalls.

Figure (2.6): Shellcode

2.1.4. Worm

 (Barwise, 2010) Defines worms as “Standalone malware computer program

that spread in other computers at the network by replicating itself”. This is the

difference between it and between the viruses (Computer Worm, 2016). The worm use

p
o

ly
 N

o
p NNNNNN

D
ec

o
d

er ddddddd
en

co
d

ed

Sh
el

l SSSSSSSSS

R
et

u
rn

 A
d

d
.

RRRRRR

www.manaraa.com

14

at most in spreading a BOF exploits that allow it to RCE itself in other computers

without any interaction from end users.

2.1.5. Remote Code Execution

Remote code execution is used to define an attacker's capability to exploit

program vulnerability to execute the malicious application on a target machine, no

matter where the device is geographically located. Then attackers can take complete

control of an affected system with the privileges of the user running the application.

Most of this weakness allow the execution of machine code and most exploits

consequently inject and execute Shellcode. It is the most powerful effect which a bug

can have because it allows an attacker to completely take over the machine the

vulnerable process is running on (Bulbapedia, 2016).

2.1.6. Zero Day

A zero-day also known as zero-hour or 0-day vulnerability refers to a hole in

the software that is unknown to the vendor which hackers can exploit to affect

computer programs, data, or a network adversely. It is known as a "zero-day" because

once the flaw becomes known, the software's author has zero days in which to plan

(Symantec, 2016) or deploy patches. Attacks are employing zero-day exploits before

or on the day that notice of the vulnerability is released to the public. Zero-day attacks

are a severe threat because its attacks can include infiltrating malware, spyware or

allowing unwanted access to user information. (Symantec, 2016)

2.2. Disassembly Engines

 Describing in this section the most famous disassembly engines which convert byte

sequence or hexadecimal sequence to the original assembly instruction according to

the different syntax type which user chooses.

2.2.1. Libdasm

“Libdasm is a C-library that tries to provide a straightforward and convenient

way to disassemble Intel x86 raw opcode bytes (machine code). It can parse and print

out opcodes in AT&T and Intel syntax” (Wicherski, Cesare, & Carrera, 2016).

www.manaraa.com

15

2.2.2. BeaEngine

A library coded in C created to decode instructions from 32 bits and 64 bits

Intel architectures. This library built for those who like analyzing malicious codes and

more generally obfuscated codes. BeaEngine decodes undocumented instructions

called "alias." In all scenarios, it sends back a complex structure that describes exactly

the analyzed instructions. It can decode 32-bit architecture as the following bytes

sequence (BeaEngine, 2013)

0x89, 0x94, 0x88, 0x00, 0x20, 0x40, 0x00 (byte sequence in hexadecimal)

It can print back on AT&T syntax

Movd %edx, %ds:402000h(%eax,%ecx,4) (converted instruction in AT&T syntax)

Moreover, the result on MASM32 syntax is

Mov dword ptr ds:[eax + ebx*4 + 402000h], ed (converted instruction in MASM32 syntax)

2.2.3. Capstone Engine

Capstone is a lightweight multi-platform, multi-architecture disassembly

framework implemented in pure C language. It is an ultimate disassembly engine for

binary analysis and reversing in the security community. It has many features like high

performance, lightweight, simple API, details on disassembled instruction

(decomposer). It is widely used in reverse engineering and disassembler applications.

We are using it in our research as external Python library to convert the hex data to

assembly. (Capstone, 2010)

www.manaraa.com

16

2.3. Polymorphic NOOPs Engines

In this section we are describing the most polymorphic NOOPs Engines used by

hackers that they bypass networks security and firewalls by converting the Shellcode

to polymorphic that the security tools could not track that this data flow is a vector

attack. We are using here using the engines that can reshape the NOOPs sled to

unknown pattern.

2.3.1. ADMmutate

It is a tool created in early 2001 that allow the attackers to obfuscate any Buffer

overflow vector attack the coder of this tool K2 and w00w00. The main purpose of

this tool was to change the exploit signature every time it is executed which we know

it results as “Polymorphic Shellcode.” One of its technique is to change NO operation

instruction to an equivalent instruction of 0x90 they always replace the NOOP section

with 55 NOOP instruction possible; This way allow the attacker bypass IDS because

the signature is changing each time. (SANS, 2002)

2.3.2. CLET

Convert the NOOP section to multi-bytes no operation and XOR encryption

the payload body with using JUNK Bytes to defeat spectrum analysis of the data

mining.

2.3.3. Metasploit

It is a computer security framework that executes vulnerabilities exploits

against remote target machine and widely used in penetration testing world. It has

many encoder’s engines to encrypt the payloads also it provides many engines to

encrypt and make the NOOP section polymorphic. It has two engines for an x86

processor that can convert the NOOP section to polymorphic SINGLE-BYTE and

OPTY2. The first one is single-byte NOOP on this engine they got the ADMmutate

55 NOOP equivalent and added to them more of instructions to make the total of single

byte 67 instruction. The second engine is OPTY2 that can create a multi-byte NOOP

sleds with different length, and it has more efficient that CLET in this feature. So

Metasploit NOOP generates a sequence of bytes of arbitrary length that equivalent to

tradition NOOP sled (a sequence of 0x90 bytes) without having any predictable pattern

www.manaraa.com

17

to bypass the IDS/IPS signature scanning of common NOOP Sleds. (Rapid7, 2013)

(Burns, et al., 2007)

2.4. Machine Learning Tools and Libraries

2.4.1. Scikit-Learn

It is an open source library with simple and efficient tools in doing data mining

and data analysis built for Python usage applications. It provides a range of supervised

and unsupervised learning algorithms via the consistent interface in Python. This

Library built upon SciPy (Scientific Python) that need include many libraries like

Numpy and MAtplotlib, so we use Anaconda python version which has all of the

required libraries. (Cournapeau, 2007) (Brownlee, 2014)

2.4.2. Anaconda

It is a leading freemium open data science distribution of Python for large-scale

data processing, predictive analytics, and scientific computing, that aims to simplify

package management and deployment. We used this distribution to reduce the python

deployment complication.

2.5. Data Mining

Data mining is the process of different queries and getting the useful information

that’s not previously known or unexpected (Khan, Thuraisingham, & Masud, 2011).

“It refers to the nontrivial extraction of implicit, previously unknown and potentially

useful information from data in databases” (Zaïane, 1999);

While data mining and knowledge discovery in databases (KDD) are usually treated

as substitutes, data mining is a part of the knowledge discovery process as shown in

Figure (2.7) it consist of sequence of steps as following:

1. Data cleaning (remove noise).

2. Data integration (multiple data sources may be combined).

3. Data selection (data relevant to the analysis task are retrieved from the

database).

www.manaraa.com

18

4. Data transformation (data are transformed or consolidated into forms

appropriate for mining by performing summary or aggregation operations).

5. Data mining (essential process where intelligent methods are applied to extract

data patterns).

6. Pattern evaluation (identify the truly interesting patterns representing

knowledge Based on some interesting measures).

7. Knowledge presentation (visualization and knowledge representation

techniques are used to present the mined knowledge to the user) (Han &

Kamber, 2005)

Figure (2.7): Data mining process steps (Han & Kamber, 2005)

Data mining studying areas include:

 Association – find patterns which something is connected to another.

 Sequence or path analysis - searching for patterns where something leads to

following things.

www.manaraa.com

19

 Classification - mining for new patterns and label all relevant objects with each

other.

 Clustering - visually groups things that related which not previously identified.

 Forecasting - realizing patterns in data that can lead to reasonable predictions.

Data mining technology is used in many research areas, including mathematics,

cybernetics, genetics, marketing, and security.

2.5.1. Supervised and unsupervised

Machine Learning is a type of algorithms that is data-driven, i.e. unlike

"normal" algorithms it is the data which "tells" what the "right answer" is. A machine

learning algorithm would not have such code definition, but would "learn-by-

examples": you will show several malicious data, and the exemplary algorithm will

eventually learn and be able to predict the class for the new data if it is malicious or

clean.

This particular example of our situation is supervised, which means that examples

must be labeled, or explicitly say which ones belong to our class and which ones are

not.

In an unsupervised algorithm samples are not labeled, i.e. we do not say anything. In

such a case the algorithm itself cannot "invent" what class it belong, but it can try to

cluster the data into different related groups. (Vento, 2016)

The proposed solution intends to use supervised learning because in our case we have

two labels of malicious data and clean data.

2.5.2. Data Mining Classifications methods:

In our research we evaluating a variety of classification methods against our

feature extracted such as: Naïve Bayes (Bernolli & Multinomial), Support Vector

Machine (SVM) and Decision Tree.

2.5.2.1. Naïve Bayes:

Naïve Bayes classifier based on Bayes' theorem, one of the main advantages of NBC

is it doesn’t require large dataset of training set to find the means and variances of the

www.manaraa.com

20

variables needed for classification. We used Multinomial and Bernorlli methods of this

algorithm. (RapidMiner company, 2016)

2.5.2.2. Support Vector Machine (SVM):

Support Vector machine is supervised learning methods that analyze data and

recognize patterns, it’s used for classification and regression analysis (Eswari &

Gunasundari, 2013).

2.5.2.3. Decision Tree

Decision tree is one of the supervised learning algorithms that follow the “Divide and

conquer” approach to solve the problem by learning from autonomous cases (Ian &

Witten, 2005).

The structure of tree includes: root node, branches and leaf, each node represent a test

for an attribute, and the branch fork the result, and each leaf node represent a class

label as shown in Figure (2.8) (Tutorials Point, 2016).

Figure (2.8): Decision Tree

2.5.2.4. Stochastic Gradient Descent

A very efficient approach to discriminative learning of linear classifiers under convex

loss functions. SGD has been successfully applied to large-scale and sparse machine

learning problems often encountered in text classification and natural language

www.manaraa.com

21

processing. It is efficient and easy to implement but it is sensitive for the feature scaling

(Cournapeau, 2007).

2.5.2.5. Adaptive Boosting

It is a machine learning meta-algorithm(estimator) that begins by fitting a classifier on

the original dataset and then fits additional copies of the classifier on the same dataset

but where the weights of incorrectly classified instances are adjusted such that

subsequent classifiers focus more on difficult cases (Cournapeau, 2007).

2.1.1. Evaluation Methods

2.1.1.1. Confusion matrix

The confusion matrix is a very useful method for analyzing how well

our classifier can define and detect the different classes, its structure as shown

in Table (2.1).

Table (2.1): Confusion Matrix

 True Class

 +ve -ve

Predicted Class

+ve TP (True Positive) FP(False Positve)

-ve
FN (False

Negative)
TN(True Negative)

 True positive (TP) refer to positive instances that correctly labeled.

 True negatives (TN) refer to negative instances that correctly labeled.

 False Positive (FP) are the negative instances that were incorrectly labeled.

 False Negative (FN) are the positive instances that were incorrectly labeled.

2.1.1.2. Performance Measures

From the confusion matrix, we can estimate and calculate the accuracy,

recall, precision, and F-measure which is used in evaluating the performance

of the classification method. This performance metrics used in chapter five to

evaluate the proposed solution.

www.manaraa.com

22

2.2. Dynamic, Static, and Hybrid Analysis

 Static analysis is performed without runtime execution. Static analysis tool

inspects program code or in assembly for all possible run-time behaviors and seek out

coding weakness, back doors, and potentially malicious code. Dynamic analysis acts

the opposite approach and is executed while a program is in operation. Dynamic test

monitor system memory, functional behavior, response time, and overall performance

of the system. The hybrid analysis combines the two mentioned analysis. (DuPaul,

2013)

2.3. Summary

In this chapter, we have described what is the most techniques and tools used in

our research. Beside that we discussed what is the buffer overflow and the Shellcode

with why it’s related in our research and where is the NOOPs sled located and why it

is used. We have used as our primary development environment the Anaconda which

supported all the libraries we need in writing the scripts like Python, NLTK and the

valuable library Scikit-Learn, which we used it all the time in classification. We used

Metasploit to generate the malicious dataset and select features using Capstone engine.

Also, we mentioned about the data mining techniques which we are using in the

proposed solution and which type we are using it (supervised). Finally, referred to

about the confusion matrix and how we use it in evaluating the performance of the data

mining algorithms.

www.manaraa.com

3. Chapter 3

Related Work

www.manaraa.com

24

Overflow detection and prevention problem have been studied since the mid-

nineteenth. However, many modern types of researches have been published to solve

this hot problem. We have review many researches and their approaches to deal with

this attack. There was many types of analysis, we are illustrating in this chapter these

types in sections like describing the research of some in the field of static analysis

which analyze the Shellcode statically and predict if it is malicious or clean. Others

used dynamic analysis which try to detect Shellcode using analyzing the packets in

real execution environment. Also, quantitative analysis used by studying the

polymorphic engines and how it works. Finally, illustrate the Hybrid way by using the

static and dynamic in mixture to detect the Shellcode.

3.1. Static Analysis:

(Gamayunov, Quan, Shakharov, & Toroshchin, 2009) proposed Racewalk

algorithm which is a significant modification of the Stride algorithm (Akritidis,

Markatos, Polychronakis, & Anagnostakis, 2005) which had linear computational

complexity, they claim novelty of NOOP-sled detection using IA-32 instruction

frequency analysis and SVM-based classification, this approach reduces the false

positive and the speed of operation is 1Gbps, main idea in this algorithm is there

NOOP-zone which consists of generally useless instruction to allow the return address

zone be in the correct stack segment because this varies from system to system, so they

detect the sled candidates and sent them to SVM-based instruction frequency analyzer.

Using only Four Shellcode engine generator they applied this algorithm. Still there

many defects like detecting NOOPs of IA-64 and couldn't detect the Shellcode that

construction methods do not rely on NOOP-sleds or used Self modified sleds not

supported and bypassed by spoofing classifier in same instruction set but with unusual

operands.

 (Pasupulati, et al., 2004) have proposed “Buttercup” SNORT plug-in that can

counter against polymorphic buffer overflow exploits by targeting 19 return address

ranges that buffer overflow exploits, They assumed that the encrypted shellcode would

change every other bit in the payload packet to avoid detection but there critical part

in payload couldn’t be encrypted this part is the “return” memory address. Simply they

identify the ranges of the possible return memory addresses for existing buffer-

www.manaraa.com

25

overflow. The return address ranges they were collected from various Buffer Overflow

vulnerability that affected many operating systems. As their evaluation results in

excellent detection for Shellcode, but there are many drawbacks in their solution

because may not be detected if there is a miscalculation in the “range offset” and

“range depth” values; beside that including the return address ranges may be changing

according to operating systems updating or upgrading that will get with it more ranges

that the system couldn’t know about it and the attackers do.

(Akritidis, Markatos, Polychronakis, & Anagnostakis, 2005) have designed new

sled (sequence) detection heuristic called STRIDE that detects several types of sleds

that have significantly more computationally efficient which can be used in networks.

So their demonstration depend on detection heuristics can be thwarted by more

elaborate sled obfuscation techniques like NOOP instructions, One-byte NOOP-

equivalents, Multi-byte NOOP, Four-byte Aligned, Trampoline-sled, obfuscated

Trampoline-sled. By searching for every position of the data to find a sled. Despite

STRIDE can detect several classes of sleds that cannot be identified by other solutions,

the low false positive rates, but it still suffer from some weakness if the attacker does

not use sled in the payload or use self-modifying sleds, and processing time very

exhaustive beside that STRIDE could not detect the payload attack if there new

equivalent NOOPS long bytes as they have restricted space of equivalents.

(Hsu, Guo, & Chiueh, 2006) present Nebula system which works as network-based

buffer overflow attack detection that can detect both known and zero-day buffer

overflow attacks based on packets analyzing without modifications on the hosts. By

using the generalized signature to capture all known buffer overflow attacks to reduce

the false positive to a negligible level. So the main signature that Nebula uses to detect

buffer overflow attacks is a sequence of identical 4-byte words that correspond to an

address in the stack region or text region, to reduce false positive rate Nebula recognize

the FTP, HTTP, P2pfile sharing, and Bit Torrent and exclude bytes in downloaded

files so this improves the optimization significantly. For overall design the proposed

design for generalized signature is as following: if an input string contains a stack

address that repeats N times, then it is regarded as code injection (CI) attack; if an

input string contains at least N copies of a pattern that consists of a shared library

function’s entry point address followed by at least one stack address, then it is regarded

www.manaraa.com

26

as return to Libc (RTL) attack and this algorithm depend on N =3. This design solves

two types of payloads attack but couldn’t handle ROP or non-ASLR attacks.

(Zhao & Ahn, 2013) Proposed a technique for modeling Shellcode detection and

attribution through a novel feature extraction method called instruction sequence

abstraction, which extracts coarse-grained features from an instruction sequence. This

technique uses Markov model for Shellcode detection and support vector machines for

encoded Shellcode attribution. There novel solution based on static analysis and

supervised machine learning techniques, to extract coarse-grained features used

instead of byte patterns, the instruction sequence abstraction. The evaluation shows

that this solution can detect all types of un-encoded Shellcode from their dataset and

can attribute encoded Shellcode to its origin engine with high accuracy. Despite the

efforts that got our attention; but it has some weakness to IA-64 Shellcodes beside the

small sample they used in training and all of this samples was from only one engine

also using all Shellcode sections in the training because the model works on known

payloads and range of it available for the researchers but it bypassed by adding low

NOOP’s all together with unknown payload in Shellcode so it can spoof it and pass.

(Wang, Wang, Luo, & Fang, 2007) Proposed DMPolD (Data Mining

Polymorphism Detection) that can detect polymorphic exploit based on semantic

signature and data-mining. The proposed method recognize JUMP address based on

Bayes algorithm. The contribution was in building the mode of OSJUMP using online

worms using specific JUMP addresses and based on this model analysis of features of

polymorphic exploits and features of perfect ones, a then method to detect exploit

through recognizing JUMP address using data mining. To prove there idea they

implemented snort plugin (ODMSnort) and evaluated the approach on it, the results

show DMPolD can detect polymorphic exploit with very low false-positive. Our

opinion is supervised machine leaning to detect Shellcode depending on JUMP address

on training could not detect all the worms or non-seen worms because the JUMP

address may always be not using this JUMPs that they used.

(Masud, et al., 2008) Proposed DExtor a data mining based exploit code detector

that protects network services. The they pivoting assumption that the normal traffic to

network services contains only data whereas exploits contains code. Their system

www.manaraa.com

27

trained with real data containing exploit code beside normal traffic after that put

DExtor between a web service and its gateway firewall. Training consists of

disassembly, feature extraction, and classification. The feature extraction depends on

instructions count, instruction usage frequency, and code vs. data length. The data set

used contained real exploit code as well as normal traffic to web servers. The

evaluation applied on unencrypted exploits from Metasploit and encrypted using other

nine engines to generate 1000 exploits and collect from internet 9000 exploit; this data

set applied on different classifiers, and the results show very high accuracy and little

false alarm rates. We see that according to the main assumption on DExtor which

depends on main use for the network is transfer data and if there lots of instructions

found on the network means it may include attack, but this is entirely untrue if we used

the network in downloading binaries or executing some application from LAN nodes.

3.2. Dynamic Analysis:

(Polychronakis, Anagnostakis, & Markatos, 2006) present Polymorphic Shellcode

detection method by emulate execution of every possible instruction sequence in

Network Intrusion Detection System(NIDS) embedded CPU, aiming to identify the

execution behavior of polymorphic Shellcodes, their approach relies on fully-blown

Intel Architecture 32 bit(IA-32) CPU emulator. The execution of a Polymorphic

Shellcode splits into the execution of two sequential parts: the decryptor and the actual

payload. If an execution chain of an input stream during decoder decryption read the

encrypted payload in order to decrypt it then, the system raises the alarm. As our

review of this approach we found that this methodology only detects payloads that

decrypt their body before executing their actual payload so the plain payloads couldn’t

be catch, also executing all the instructions will delay the throughput of the network,

beside that the attacker can leverage context not available at the network level for

building Shellcodes that cannot be unambiguously executed on the network level

processor emulator. Detecting such attacks remains an open problem in this approach.

(Fen, Fuchao, Xiaobing, Xinchun, & Bing, 2012) present a method uses

randomization based on data protection through protection of pointers and arrays,

because of buffer overflow nature which depends on exceeding write on the limited

area and populates the return address they use randomization on the arrays and pointers

www.manaraa.com

28

in program space to protect buffers, point data, and return address. This randomization

applied to the source by using XOR encryption for all the array and buffers, so when

the overflow happened, the target will be an encryption value which couldn’t point to,

then the attack failed. This approach applied on the coding time to protect yourself

application from using it in any type of buffer overflow attacks on the systems, but the

major problem still available on the applications from the shelf or on the operating

system itself.

(Khodaverdi & Farnaz, 2013) proposed robust run time heuristic for detecting

those Shellcodes which hard-coded addresses as they take in consideration there still

too many users using older versions of windows which not protected by Address Space

Layout Randomization (ASLR) -enabled Windows. They used a custom emulator

which supports the execution of IA-32 instructions, and they repeat the execution

multiple times starting from each location of the input stream to find all possible

executable sequences of instructions in the input stream and detect any hard corded

address that points to the stack pointer. Their evaluation results show low false positive

on 10 million random binary. They assume using this emulator in a host level to detect

the attacks and for better performance. However, this approach could not detect return

oriented programming (ROP).

3.3. Quantitative Analysis:

(Song, Locasto, Stavrou, Keromytis, & Stolfo, 2009) present a quantitative

analysis of the strength and limitations of Shellcode polymorphism and describe the

impact of these techniques in the context of learning-based IDS systems. They focused

on two methods: Shellcode encryption-based and targeted blending attacks; because

this two types used in the wild attack and successive in evading IDS sensors. Their

paper demonstrates metrics to measure the effectiveness of modern polymorphic

engines and provide insights into their designs. The paper dive in the construction of

many Shellcode types to understand the overall issue, and after that analyzed the

polymorphic engines –six of them- and by generating 10000 unique samples they

plotted visualization images for each engine outputs to extract the pattern they use

in creating the op codes, also they combines two engines that using polymorphism

and blending in one engine called it A Hybrid Engine, they simply use CLET to

www.manaraa.com

29

cipher the Shellcode, then hide CLET’s decoder with ADMmutate and use

ADMmutate’s advanced NOOP sled generator and show how the attackers can

blending between many engines to generate new patterns. After that presents new

design to detect the modern obfuscation techniques. This paper allows us to go throw

the internal of designing the polymorphic Shellcodes engines.

3.4. Hybrid Analysis:

(Yuan & Ding, 2011) Proposed a method that use’s static analysis (source code

analysis) with the dynamic test (test a program while it is running), so this approach

strikes a proper balance between static and dynamic analysis to identify buffer

overflow vulnerabilities in binary code (IA-32) without source code. They used two

steps in their approach, first find some potential weakness locations then test every

potential weakness locations so reduce the false positive. After disassembly programs

they go throw many steps include identify function call relations, analysis stack space,

analysis parameters, the use of local buffer, and finally determine the overflow

function by using BugScam that can detect functions utilized in the binary file like

Strcpy and so on and on the dynamic use Ollydbg to populate this functions that

identified before in static to see if it check bounders or it overflow, testing results

shows low false alarm. We see this approach can handle the stack overflow, and heap

overflow can be a success and need from us to put all the binaries of the organizations

to this analysis to allow it know if there is the ability to buffer overflow and this is not

easy to be done.

3.5. Comparative Analysis:

(Silberman & Johnson, 2004) This paper examines two approaches by applying

for a generic protection against buffer overflow attacks and critique the effectiveness

of available buffer overflow protection mechanisms on the Linux and Microsoft

Corp.'s Windows platforms. They explained the concepts behind buffer overflow

protection software’s and implementation details for popular systems, Discussed

protections implementations in kernel enforced protection like MMU ACLs,

NOEXEC, ASLR and protection in compiler enforced protection like Stack Canaries.

After that describe how Linux and Windows use mixed techniques to protect from

Buffer overflow. Finally shows attack vector test results for each technique that evade

www.manaraa.com

30

buffer overflow according to the long list of different attack techniques. They find a

final result that the currently available solutions may not be perfect to defense buffer

overflow attacks.

3.6. Previous Solutions and weakness:

In Table (3.1) listed the related works solutions with weakness they are suffering.

Table (3.1): Related works and its weakness

Solution Proposed weakness

1 Use return address range from public

worms to search for sleds have them to

catch buffer overflow action. (Pasupulati, et

al., 2004)

Range offset of used returns

may change at any time.

Bypassed by unseen return

addresses.

2 Use static analysis to identify the 1-byte

equivalent, multi-byte NOOPs by using n-

gram disassembly. (Akritidis, Markatos,

Polychronakis, & Anagnostakis, 2005)

Self-modified sleds not

supported and processing time

very exhaustive. Bypassed by

new equivalent NOOPS long

bytes as they have restricted

space of equivalents.

3 Use instruction frequency analyzer to detect

NOOP sled using classification algorithm.

(Gamayunov, Quan, Shakharov, &

Toroshchin, 2009)

Self-modified sleds not

supported, no detecting for IA-

64 and shells does not use

NOOP sled, bypassed by

spoofing classifier in same

instruction set but with unusual

operands.

4 Detect the packets if there any 4 bytes that

represent stack address and repeated N

times. (Hsu, Guo, & Chiueh, 2006)

Couldn’t catch ROP or anti

ASLR shells. Totally outdated

in new versions of OSs.

www.manaraa.com

31

Solution Proposed weakness

5 Use instruction sequence abstraction for all

the shells in Markov model for detect shells.

(Zhao & Ahn, 2013)

The small sample used in

training only one engine, beside

bypassed by adding new

unknown payloads in the

Shellcode, so the model

spoofed.

6 Assuming the packets in the network is data

and when there code then its exploit and

used data mining to classify. (Masud, et al.,

2008)

Work only on web services.

7 Use data mining to recognize jump address

based on Bayes by building a model using

worms specific jump addresses and added

the method as a plugin to snort. (Wang,

Wang, Luo, & Fang, 2007)

Couldn’t catch unknown worms

nor all worms because jump

addresses could change in

anytime.

8 Use embedded CPU to execute the behavior

of polymorphic Shellcodes. (Polychronakis,

Anagnostakis, & Markatos, 2006)

Don’t detect shells that decrypt

body before execution, too

delay in packets & IA-32 only.

9 Use randomization in the buffer by using

XOR encryption for all data stored in

memory so couldn't execute shells. (Fen,

Fuchao, Xiaobing, Xinchun, & Bing, 2012)

Need to apply in coding time

and couldn't apply to

applications you do not have the

source code.

10 Using return address to identify shells by

emulate executable sequences.

(Polychronakis, Anagnostakis, & Markatos,

2006)

Couldn’t detect ROP types.

11 find a potential weakness in code and then

test against BOF and after that use

BugScam to identify all the vulnerable

Handle the stack overflow and

heap overflow can success in

case putting all the binaries of

www.manaraa.com

32

Solution Proposed weakness

functions and use Ollydbg to populate this

function and know if it is overflowed or not.

(Yuan & Ding, 2011)

the organizations to this analysis

to allow it know if there is the

ability to buffer overflow and

this is not easy to be done.

3.7. Summary

As listed in this chapter. The researchers of detecting buffer overflow were using many

analysis techniques. Firstly, Static analysis in using Return address range to catch

buffer overflow. Beside identify the 1-byte equivalent, and Multi-byte NOOPs by

using n-gram disassembly. Also, use instruction frequency analyzer to detect NOOP

sled using classification algorithm. Identify the packets and if there any four bytes that

represent stack address and repeated N times. Use instruction sequence abstraction for

all the shells in Markov model for detect shells.

Secondly, Dynamic analysis assuming the packets in the network is data and when

their code then it is exploited and used data mining to classify and use data mining to

recognize jump address based on Bayes by building the model using worms specific

jump addresses and added the method as a plugin to snort. On the other hand, there

was a dynamic analysis that use embedded CPU to execute the behavior of

polymorphic Shellcodes, use randomization in the buffer by using XOR encryption for

all data stored in memory so couldn't run shells, and using return address to identify

shells by emulate executable sequences. All of these researches have defects that we

discussed on each listed approach, based on that our proposed solution will solve this

holes in the scope we identified to detect the unknown polymorphic Shellcodes by

using classification algorithm on the op-code of polymorphic NOOP sled.

As we mentioned there many proposed solutions that depend on data mining

techniques but the difference between my work and all of these solutions that we using

the NOOPs section in Shellcode and the type of data that extracted in feature extraction

because we are using the operation code of the instructions for features.

www.manaraa.com

4. Chapter 4

Proposed Solution and

Methodology

www.manaraa.com

34

In this chapter, we present and illustrate our solution in detecting the polymorphic

Shellcodes using essential part NOOP’s sled. This chapter is organized by defining our

solution methodology steps followed by identifying our dataset and how we extracted

and collected it from the Polymorphic Shellcode engines then how we preprocess and

feature selection the data, then describe how we applied the classification algorithms,

and finally applying used classifiers and evaluate the method. We have used as our

primary development environment the Anaconda which supported all the libraries we

need in writing the scripts like NLTK and the valuable library Scikit-Learn, which we

used it all the time in classification. We used Metasploit to generate the malicious

dataset and select features using Capstone engine.

4.1. Solution Steps

Our solution depends on using data mining classification techniques to define packets

of data if they are malicious (polymorphic NOOPs) or not. We extracted special

features which depends on the operation code of the assembly instruction of network

data. So the steps shown in Figure (4.1) is the base steps of the solution methodology.

Figure (4.1): Solution Steps

Define Shellcode
Polymorphic

Engines

Genrate Engine
Commands

Generate
Polymorphic
Shellcodes

Build Dataset

Feature Select
From Clean &

Malicious

Collect Clean
Data

Apply
Classification on

Training Data

Testing
Classification

Model

Evaluate the
Solution

www.manaraa.com

35

In Figure (4.2) show the overall view of the solution to detect the malicious packets

(polymorphic Shellcodes). We defined the polymorphic engines and collect the most

popular Shellcode engines of Metasploit which its architecture is IA-32 like SINGLE-

BYTE and OPTY2 engines. Then implement script that applies automatic generation

on the engines with all possible parameters. So we generated a significant amount

(500,000) of polymorphic Shellcodes so we can label this files as malicious because

this engines is well known in the hacker’s world that can generate CPU instruction that

do nothing but not in the usual way we are writing in the assembly instructions. After

that use Capstone Engine to disassembly all the NOOP sections. The last step in

building the dataset is to extract the features that we will use in the classification

algorithms, so we got the operation code of the assembly instructions. Also, repeat the

process for clean data and applications files to build the equivalent dataset which

labeled with clean.

The last step in the solution is to pass this two labeled dataset to the classification

algorithm. We used classification methods such as SVM, Decision Tree, Bernoulli

NB, Multinomial NB, AdaBoost, and SGD. Dataset separated to training dataset with

70% of the original dataset with balancing of clean and Shellcode data that we have

we stopped using cross validation because of the large of the data and it take long time

in training while substituting the features.

www.manaraa.com

36

 Figure (4.2): The Proposed Solution

www.manaraa.com

37

4.2. Dataset

We start searching for online benchmark dataset of buffer overflow shell codes.

Unfortunately, we could not find anything for this start, and we began emailing the

researchers who have published papers in the area of our research, and only one

professor responded with a negative response and told us that he does not have the

dataset, but we can regenerate it from the exploits engines. Then we changed our

direction to generate the dataset corpus ourselves, so we searched for all the engines

which can generate polymorphic no operation instructions. We found that their many

engines like CLET, ADMmutate, Metasploit-Single, and Metasploit-Opty2 (Zhao &

Ahn, 2013).

After more investigating and searching we discovered that ADMmutate generates

different 55 1-byte no operation, CLET can generate multi-bytes no operation. We

concluded that Metasploit had all the 55 NOOPS of ADMmutate and added on it 12

new single bytes no operation so we excluding ADMmutate engine and we also found

that CLET multi-byte included in the opty2 and excluded also.

Metasploit (single, opty2) engines used in generating the dataset, the steps employed

in this stage as following:

4.2.1. Generate Polymorphic NOOP Dataset

We created automation script illustrated in flowchart Figure (4.3) to create

Metasploit commands which can generate the no operation combinations of opty2 and

single byte. This code creates a file (generator.rc) that hold all the commands that

generate NOOP’s from 1 byte to 5000 bytes and on each length it generates 100

different combinations of NOOP’s so we have 5000* 100 = 500,000 command line

like the sample shown in Table (4.1).

Table (4.1): MSF Command Sample with Description

Commands

samples

generated

Use nop/x86/opty2; spool Desktop/nops/1000.nop; generate

1000 –t hex;

Use nop/x86/single_byte; spool Desktop/nops/33.nop; generate

33 –t hex;

www.manaraa.com

38

Describe the

commands

Use nop/x86/opty2 Use opty2 engine from

Metasploit

Use nop/x86/single_byte Use single byte engine from

Metasploit

spool Desktop/nops/1000.nop Set the file that stores the

NOOP’s

generate 1000 –t hex Execute command to generate

1000 byte encoded to

hexadecimal.

We executed this resource script (commands file generator.rc) on Kali Linux which

has Metasploit installed by executing this terminal command

msfconsole –r generator.rc

After this command starts executed, this took to finish 160 hours and finally we have

500,000 files of polymorphic NOOP’s in different sizes from 1 byte to 5 KB and 2.6

GB of the whole size. This is sample record of NOOP’s in hex with length 30 bytes.

4e6bd547b22cbe1d15bbbf9325990c982d3f48b64090a8f8b5371c140441

www.manaraa.com

39

Figure (4.3): Flow Chart of the script that generates polymorphic engine commands.

www.manaraa.com

40

4.2.2. Select Features from malicious Corpus

To select features from the polymorphic NOOP’s generated we need to

disassemble all the bytes that generated from the malicious Shellcode engines and get

the full instructions which represent all these bytes. We used Capstone Engine to

disassemble hexadecimal files to assembly then get the operation code of each

instruction, so we wrote a script to do this conversion as shown in the flow chart in

Figure (4.4).

Figure (4.4): Feature Selection from Corpus

www.manaraa.com

41

The procedure in Figure (4.4) read each hexadecimal files then convert to assembly

instructions of Intel 32 bit architecture. Then on the next steps we extract the operation

code only from the instruction line. This procedure take 3 hours to finish in execution

to convert 500,000 assembly file, so we get finally the NOOP’s dataset with size of

4.2 GB.

4.2.3. Create Clean Corpus

In order to do supervised classification, we need to create the second label to let

the method work. Here we need create clean data corpus with “clean” label for

classifier methods. We have been collected 120,000 files from different types such as

Movie clips, books, images, texts, docs, applications, binary libraries, Dll files, Etc.

The final size of these files was 3.7 GB. Then next step is to convert this clean files to

assembly and then select the features as we did with the malicious corpus, so we

created a new script which can convert binary data to assembly using Capstone Engine

as shown in flowchart Figure (4.5).

As description of the Figure (4.5) we have collected all the clean data paths and read

them in binary to provide them as input to Capstone Engine which processing this

binary data and convert them to assembly instructions then select the main features

that we need which is operation codes like what we did with NOOP’s data files before.

According to the most of the clean raw files -which was input to the system- does not

a CPU instruction so the Capstone Engine could not found appropriate instructions on

the IA-32 that can be correlated with the bytes.

Finally, at this stage, we have a corpus of clean assembly operation code which has

size of 737 MB for 72,000 files.

www.manaraa.com

42

Figure (4.5): Generate clean corpus from clean files

www.manaraa.com

43

4.2.4. Dataset sample

In this section shows table which describe sample of the dataset and the dataset

representation (weighing) model and show how the decision tree will represent this

model to label the records to clean or malicious. Datasets used is length independent

and location independent on the byte sequence because of disassemble most shellcode

bytes in the packets, no matter where it is started, and the solution approach to moniter

data stream online so the length of packets or the location of the feature couldn’t be

known. The input matrix in the classification algorithm built depending on the next

formula which represent each node of the matrix in binary.

𝑀𝑛,𝑗 = {
1, 𝑛 𝑖𝑠 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑖𝑛 𝑗 𝑟𝑒𝑐𝑜𝑟𝑑
0, 𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑖𝑛 𝑗 𝑟𝑒𝑐𝑜𝑟𝑑

Where,

 𝑛 is the index of feature in the features name header.

𝑗 is the index of feature records.

To give an example how is the formula working and how features input the model and

what is the output represintation in an example. In Table (4.2) listing four samples of

what is inputing to the system with labeling on each of this sample records that will be

converted to boolean weighing matrix.

Table (4.2): Four Samples of Dataset

({and, dec, jg, xor, sub, mov, jge, jl, jecxz, add, adc, lahf, xchg, jae, jno, loop, cmp}, 'clean')

({and, lea, dec, inc, sub, salc, mov, sbb, jecxz, add, test, adc, jg, das, xchg, xor, cwde, or, cmp}, 'clean')

({and, lea, jnp, inc, stc, jp, mov, cwde, jo, das, xchg, jg, dec, aad}, 'malicious')

({jns, and, xor, sub, stc, mov, js, clc, rcl, jbe, xchg, mul, jg, jno, inc}, 'malicious')

Next step is collecting all the features (instructions) occurs in the samples and get each

feature only once (as we do not care to the order of the feature according to the reason

mentioned in this section) without repeating from all of the samples that act as input

to the system so it will appear as output of the above four samples as shown in Table

(4.3) this features indexed according to the position where it is placed to act as matrix

header.

www.manaraa.com

44

Table (4.3): Feature names header

aad,adc,add,and,clc,cmp,cwde,das,dec,inc,jae,jbe,jecxz,jg,jge,jl,jno,jnp,jns,jo,jp,js,lahf,lea,loop,mov,mul,or,rcl

,salc,sbb,stc,sub,test,xchg,xor

In this step after list all the features, need to transfer features to Boolean matrix by

checking each feature in the feature names header is available or not, and if it is

available in the sample it will be replaced with 1 and if not with 0 according to the

formula.

Table (4.4): Matrix of Boolean Weighing of Four Example Records

[

𝟎 1 𝟏 𝟏 𝟎 𝟏 𝟎 𝟎 𝟏 𝟎 𝟏 𝟎 𝟏 𝟏 𝟏 𝟏 𝟏 𝟎 𝟎 𝟎 𝟎 𝟎 𝟏 𝟎 𝟏 𝟏 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟏 𝟎 𝟏 𝟏
𝟎 1 𝟏 𝟏 𝟎 𝟏 𝟏 𝟏 𝟏 𝟏 𝟎 𝟎 𝟏 𝟏 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟏 𝟎 𝟏 𝟎 𝟏 𝟎 𝟏 𝟏 𝟎 𝟏 𝟏 𝟏 𝟏
𝟏 0 𝟎 𝟏 𝟎 𝟎 𝟏 𝟏 𝟏 𝟏 𝟎 𝟎 𝟎 𝟏 𝟎 𝟎 𝟎 𝟏 𝟎 𝟏 𝟏 𝟎 𝟎 𝟏 𝟎 𝟏 𝟎 𝟎 𝟎 𝟎 𝟎 𝟏 𝟎 𝟎 𝟏 𝟎
𝟎 0 𝟎 𝟏 𝟏 𝟎 𝟎 𝟎 𝟎 𝟏 𝟎 𝟏 𝟎 𝟏 𝟎 𝟎 𝟏 𝟎 𝟏 𝟎 𝟎 𝟏 𝟎 𝟎 𝟎 𝟏 𝟏 𝟎 𝟏 𝟎 𝟎 𝟏 𝟏 𝟎 𝟏 𝟏

]

In Table (4.4) binary matrix represented which act as the input to the classification

algorithm that result by applying the previous formula with respect that the first two

samples are clean label and the other malicious label. By using this sample matrix as

input matrix for Decision tree algorithm to build the decision tree model that allow

seeing the output visually. The result of this four records can be seen in Figure (4.6)

which it classify two of them to malicious and the other two to clean. The tree shown

in Figure (4.6) produced from the matrix in Table (4.4) using partitioning the examples

recursively by choosing one attribute each time to find the best attribute installed in

the root, then split data and find the best attribute in each node, then repeat this stage

until all node are pure and the nodes contains fewer cases. By applying this building

tree strategy on the matrix in Table (4.4) found that aad not fitting the best node at

root. So, continue to the next adc to find it can classify all the samples from the next

nodes as the first and the second samples have 1 and the other two have 0 this mean

any sample that contains adc is a clean sample and malicious otherwise. This can be

represented by classification rules like (If adc <=.5 then label=malicious otherwise

label =clean). In conclusion of that the algorithm stops because it classify all the

records with minimal nodes. Explaining about attribute Gini in the tree is a measure

of how often the chosen element would be incorrectly labeled in each node. So, it

reaches its minimum (zero) when all cases in the node fall into a single target label.

The nods are not too many in the proposed example because of the samples is too little.

The nods increasing as well as the records are increasing so the output model of 28

www.manaraa.com

45

samples as another example as shown in Figure (4.7) have more nodes and so on in

large dataset.

Figure (4.6): Output Representation of Decision Tree Applying on the four Samples

Figure (4.7): Decision Tree Model for Twenty eight Samples

www.manaraa.com

46

4.3. Classification Procedures

To do supervised classification we need training data for the different

classification algorithms to produce the model that can identify the related patterns

between each class label then, we need testing data that we will apply the model to

evaluate how is this model is correct by using different metrics like accuracy, recall,

precision, and F-measure.

We have prepared in the dataset section the two labeled (clean, malicious) datasets to

add them as input to the classification process. We have separated each data set from

the two label’s to 70% of data as training data for each and 30 % of data for testing the

model. The 70% of malicious data is larger than the clean, so to achieve equality

between clean and malicious dataset’s we have shuffled all the malicious dataset

randomly and separate 70,000 records from the original, and we have second reason

to get 30% of the malicious corpus is to reduce the time of processing in different

classification stages.

4.3.1. Preprocessing

On the first part of doing the classification is to refining and polishing the corpus

besides doing shuffling, getting a small piece of the dataset, labeling the sets and

combine the 70% of training data together from clean and malicious and finally

combine the testing sets with each other. Figure (4.8) show a flowchart for the

preparation for classification. As show we are importing libraries and classifiers, then

load the corpus data using lazy loader because of significant data, also configure the

lazy loader to get the dataset files from two folders named as “clean” and “malicious.”

After that we continue to shuffle the corpus and getting 70,000 from the malicious

corpus, then labeling each data record with its appropriate label. In addition to all of

that, we get 70% of each of the two datasets and combine them like training data and

get the 30% as testing data. The last step is to pass this data to a procedure to let any

Classifier algorithm to process this data.

www.manaraa.com

47

Figure (4.8): Corpus preparation

www.manaraa.com

48

4.3.2. Classification process implementation

We have created a procedure which accepts as input any classifier algorithm

implementation class which SKLEARN provided on its library package. In this stage

we continue processing the data after we finished from preprocessing it, so we have a

dataset for training ready and dataset for testing ready. Figure (4.9) shows our function

in flowchart which can describe the flowchart as the following steps:

 The function has parameters to accept the Classifier method, training dataset,

and testing dataset.

 Initialize the Classifier method with the different parameter variables which

the algorithm deals with.

 Train the classifier method to get the model that we need to test.

 Compute the execution time of the training data processing.

 Test the trained model with the testing dataset.

 Compute the execution time of model test process.

 Compute the accuracy of testing model process results.

 Create reference set with originally labeled set and compute each feature of the

testing data label using the trained model; to pass these two sets in the different

evaluation metrics.

 Compute evaluation metrics (Precision, Recall, and F-measure) for the clean

and malicious tested on the model.

Separating the assessment for each label from a security perspective to know how

is the solution is efficient in detecting the attacks and know the rate of false alarm

which is clean.

We used the described flowchart in Figure (4.9) to evaluate many classification

algorithms to find the best method that support our solution from security point of

view, these algorithms which we compared between were Support Vector

Classification (SVM), Stochastic Gradient Descent (SGD), Multinomial Naïve

Bayes, Bernoulli Naïve Bayes, AdaBoost classifier, and Decision Tree (DTs).

www.manaraa.com

49

Figure (4.9): Classification training and testing processes and compute evaluation

metrics

4.4. Summary

We have searched for a benchmark dataset to apply the proposed solution with; but we

had not succeeded, so we have generated the dataset of the clean and malicious by

ourselves and used the op-code of the NOOP’s as feature selection. Next, we

developed a script that allowed us to use the classification algorithms which

implemented in the Scikit Learn library. We utilized in the script the shuffling then do

generate the model of the classifier from training dataset then test this model, after that

we compute all the performance metrics which we got it from the confusion matrix.

www.manaraa.com

5. Chapter 5

Experimental Results

and Evaluation

www.manaraa.com

51

In this chapter, we are listing experimental environment, all the tools we have used

to finish the work in this research besides explaining difficulties that faced us in the

research, and classification settings we used.

Then viewed all the experimental results that we have performed on five classification

algorithms. Finally, compare evaluation metrics that represented from the confusion

matrix to choose the appropriate algorithm which can fit the best of security solution

to apply it to our solution.

5.1. Experimental Environment

We have used Virtual Windows 7 64-bit, a processor with 2.5GHz quad-core Intel

Core i7, RAM memory 10036MB, with 57GB of SSD hard Drive.

5.2. Experiments and Results

5.2.1. Experiments

We started the experiments on the previously mentioned environment and

classification settings. Table (5.1) illustrate the results of all experiments done with

SVM, SGD, Multinomial NB, Bernoulli NB, Ada Boost, and Decision Tree and shows

the results of different metrics like accuracy, recall, precision, and f-measure.

www.manaraa.com

52

Table (5.1): Performance results

D
ec

is
io

n

T
re

e

3
.2

3
3

1
.4

0
5

.9
3

3
3

.9
1

9
3

.9
4

8
2

.9
5

.9
1

6
6

.9
3

4
4

.9
3

2
2

E
n

se
m

b
le

A
d

a
 B

o
o
st

9
.2

8
0

1
.5

7
8

.9
4

0
8

.9
2

1
8

.9
6

1
6

.9
6

3
3

.9
1

8
3

.9
4

2
1

.9
3

9
4

B
er

n
o
u

ll
i

N
a
ïv

e
B

a
y
es

2
.7

0
3

9

1
.6

7
1

0

.9
3

6
6

.9
0

9
3

.9
6

7
8

.9
7

.9
0

3
3

.9
3

8
7

.9
3

4
4

M
u

lt
in

o
m

ia
l

N
a
ïv

e
B

a
y
es

2
.8

1
2

1
.3

9
1

.9
4
3
3

.9
0
1
8

.9
9
4
4

.9
9
1
2
6

.8
9
1
6

.9
4
6
1

.9
4
0
2

S
G

D

C
la

ss
if

ie
r

3
.0

4
7

1
.3

8
9

.9
3
9
9

.9
1
1
9

.9
6
4
5

.9
6
6
6

.9
0
6
6

.9
3
8
5

.9
3
4
7

S
V

M

3
.9

6
8

1
.7

3
4

.9
4
9
1
6

.9
1
2
7
1

.9
9
2
6
8

.9
9
3
3
3

.9
0
5

.9
5
1
3
1

.9
4
6
8
1

T
ra

in
in

g

T
es

ti
n

g

A
cc

u
ra

cy

M
a

li
ci

o
u

s

C
le

a
n

M
a

li
ci

o
u

s

C
le

a
n

M
a

li
ci

o
u

s

C
le

a
n

E
x

ec
u

ti
o

n
 T

im
e

(s
ec

)

P
re

ci
si

o
n

R
ec

a
ll

F
-M

ea
su

re

www.manaraa.com

53

5.2.2. Comparing Results

Table (5.2): Experiments training time for all classification algorithms

Execution time results of building models from the algorithms processes listed in Table

(5.2). From this chart we can deduct that Bernoulli Naïve Bayes and Multinomial

Naive Bayes are the quickest methods in contrast of AdaBoost is the slowest in

creating the learning model by training the different methods. By the way, training

time does not benefit I real use, so we could not depend on this metric as this would

not be useful for us from security perspective nor let us choose the best here to get

more successful results.

SVM SGD
Multinomial

NB
BernolliNB Ada Boost Decision Tree

Training Time 3.968 3.047 2.812 2.7039 9.28 3.233

0

1

2

3

4

5

6

7

8

9

10

TrainingTime (S)

Training Time

www.manaraa.com

54

Table (5.3): Experiments testing time for all algorithm models

Execution time results for testing models generated from the different classification

algorithms listed in Table (5.3) From the network security point of view we consider

not affecting the data rate flow in the network when applying the classification model

for instances at real time; So testing time is crucial as the detection system of

polymorphic NOOP’s will be on network flow so need not make this process take a

long time when applying the classification on single instances. Founded that the results

for all methods acceptable which we have at most 1.734 seconds to identify more than

150 MB of network data as malicious or clean. This indicates for the high speed result

when applying the classification model on single packet instead mass of data in real

environment. We have Multinomial Naïve Bayes, and SGD is the fastest and SVM is

the slowest. This metric give us a view about the speed when classifying mass of data

and that indicate that classifying single instance will be very fast.

SVM SGD
Multinomial

NB
BernolliNB Ada Boost

Decision
Tree

Testing Time (s) 1.734 1.389 1.391 1.671 1.578 1.405

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Testing Time (s)

Testing Time (s)

www.manaraa.com

55

Table (5.4): Accuracy of experiments results

(5.1)

Using equation (5.1) the confusion matrix accuracy, we can compute the accuracy of

each classification algorithm. This evaluation evaluates the methods employed on

training by representing how accurate is it and what is the ratio result. We found all

the six methods have high accuracy with greater than 93% results.

Results in Table (5.4) gives us a good impression that our solution and features we

selected to give best results against detecting polymorphic buffer overflow vector

attacks. Precisely we can see that SVM is the best accuracy results with 94.9%.

Computing error-rate for all of algorithms result that SVM has the smallest error rate

with nearly 5%.

SVM SGD
Multinomial

NB
BernolliNB Ada Boost

Decision
Tree

Accuracy 94.92% 93.99% 94.33% 93.66% 94.08% 93.33%

Error rate 5.08% 6.01% 5.67% 6.34% 5.92% 6.67%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Accuracy Error rate

www.manaraa.com

56

Table (5.5): Precision of experiments result

(5.2)

Evaluating the malicious rate that correctly predicted by the system from overall

system prediction computed using equation (5.2) (precision computation from

confusion matrix). We can see in Table (5.5) the method of ADA BOOST has the

highest value with 92% correct prediction precision and the others have greater than

90% in precision predicting the malicious label. On the other hand, we found that SVM

and Multinomial Naïve Bayes have the highest rate with 99.2% with 99.4%

respectively in the correct predicting precision of clean label. SVM predict eight clean

from each 1000 files as malicious data which is a little bit small rate for the false alarm.

Also, on Multinomial NB we have six false alarm from 1000 packets in our

experiments.

0
.9

1
2

1
7

0
.9

1
1

9

0
.9

0
1

8

0
.9

0
9

3

0
.9

2
1

8

0
.9

1
9

3

0
.9

9
2

6
8

0
.9

6
4

5

0
.9

9
4

4

0
.9

6
7

8

0
.9

6
1

6

0
.9

4
8

2

S V M S G D M U L T I N O M I A L N B B E R N O L L I N B A D A B O O S T D E C I S I O N T R E E

PRECISION

Malicious Clean

www.manaraa.com

57

Table (5.6): Recall of experiment results

(5.3)

The rate of correctly malicious prediction from all of real malicious calculated from

this equation (5.3) (Recall computation from confusion matrix). We can see in Table

(5.6) that Decision Tree is the lowest rate in sensitivity detecting the malicious data

with rate 95% and the other methods with a high rate greater than 96%. So we found

that the engines models can sensitively identify most of the relevant malicious

documents. This evaluation is critical, and we are using it as the first factor which

results that SVM can detect 99.3% of the real malicious data as we take care to not

miss any malicious packets in contrast of getting false alarm when there is no attack

because I need to stop the real attack.

0
.9

9
3

3
3

0
.9

6
6

6

0
.9

9
1

2
6

0
.9

7

0
.9

6
3

3

0
.9

5

0
.9

0
5

0
.9

0
6

6

0
.8

9
1

6 0
.9

0
3

3 0
.9

1
8

3

0
.9

1
6

6

S V M S G D M U L T I N O M I A L N B B E R N O L L I N B A D A B O O S T D E C I S I O N T R E E

RECALL

Malicious Clean

www.manaraa.com

58

Table (5.7): F-Measure evaluation result from confusion matrix

(5.4)

We determined the overall performance quality of the classification algorithms by

combine precision and recall in harmonic mean which computed by equation (5.4)

(Compute f-measure evaluation metric from labeled precision and recall) we found

that all the engines have excellent high rate results except Decision Tree as shown in

Table (5.7).

0
.9

5
1

3
1

0
.9

3
8

5

0
.9

4
6

1

0
.9

3
8

7 0
.9

4
2

1

0
.9

3
4

4

0
.9

4
6

8
1

0
.9

3
4

7

0
.9

4
0

2

0
.9

3
4

4

0
.9

3
9

4

0
.9

3
2

2

S V M S G D M U L T I N O M I A L N B B E R N O L L I N B A D A B O O S T D E C I S I O N T R E E

F-MEASURE

Malicious Clean

www.manaraa.com

59

5.3. Summary

From the security perspective, we need to choose the best classifier method,

which produces results with the highest rate of correctly predicted from real overall

results. That means we are looking for the sensitivity (Recall) of the algorithm, so we

are depending on malicious RECALL evaluation in choosing the classifier method as

the factor.

From experiments, which we have applied we got the evaluation results as shown in

the charts. According to the factor which we depend on (the RECALL as we

described), we found that SVM method scores high result with Recall rate is 99.3% in

classifying the malicious packets. It fails on classifying clean data with ten samples in

each 100 samples with a rate of 90.5%. This result means there is slight malicious can

pass from SVM model, but we have a percentage of a false alarm which classifies

clean data as malicious and this rate 9.5% so we see it can be acceptable rate and need

to be improved in this stage as we care for not allowing any malicious packets to be

pass.

To support our selection also SVM has the highest accuracy beside high precision.

Also, the F-measure is very high.

Overall we choose SVM as the main classifier method for our solution according to

the factor we chose as evaluation metrics.

www.manaraa.com

6. Chapter 6

Conclusion and Future

Work

www.manaraa.com

61

In this research, we demonstrated how much is the buffer overflow is danger and

how hackers can be employing the weapons of polymorphic Shellcodes to hack the

systems and bypass security that can catch Shellcodes. Also, we mentioned about

Intrusion detection systems and how they depend on signatures and how polymorphic

Shellcodes can pass. We described other researchers solutions, which have different

types of analysis trying to detect and prevent buffer overflow such as instruction

frequency analyzer, or assuming packets is data and could not have instructions, or

encrypt buffers with XOR, or by analyzing n-gram disassembly ..., etc.; we illustrated

the defects in the related work and how can hackers bypass these solutions.

We worked on a new solution using data mining classification. This solution depends

on the idea of getting the op-code of the CPU Intel architecture instruction sets for the

polymorphic sled NOOPs of 32-bit and applying the classification on it. Only that can

detect Buffer overflow polymorphic vector attack on network level before the

Shellcode can conduct the victim host. Our solution depends on a self-generated

dataset from Metasploit polymorphic NOOPs engines. We applied different

classification algorithms on the dataset to get the perfect method that can deal with our

problem. Solution experiments illustrated high accuracy in detecting malicious data on

the network with low false alarm for most of the algorithms we used. We chose SVM

as the best classification algorithm that can handle this issue because of it has 94%

accuracy and getting 99.33% of malicious recall metrics and the low false alarm we

get. Our solution shows significant results comparing against signature based on

SNORT IDS which we compared against 1000 packets of polymorphic Shellcodes. By

activating the latest Rules available on SNORT site. It can detect 502 packets of 1000

packets as a harmful packets with rate of 50.2%, on the other hand, our solution detects

most of this packets with a near rate of 94% in this comparison experiment.

We are looking as future work to implement our solution as a plugin on SNORT IDS,

to allow the solution work on the real environment. These will protect users and

networks from the effectiveness of buffer overflow vulnerabilities. Also, we are

looking to make the prediction of data type speeder with reducing the false alarm that

system shows. Beside that we are looking to extract a new type of feature that can help

in speeding the classification and give higher results in the evaluation.

www.manaraa.com

7. References

www.manaraa.com

63

The Reference List

Akritidis, P., Markatos, E. P., Polychronakis, M., & Anagnostakis, K. (2005, June 1).

STRIDE: Polymorphic Sled Detection Through Instruction Sequence Analysis. Paper

Presented at 20th International Information Security Conference Security and Privacy

in the Age of Ubiquitous Computing IFIP TC11 (pp. 375-391). Chiba, Japan: Springer

US.

Barwise, M. (2010, September 9). What is an internet worm? Retrieved March 5, 2016,

from bbc: http://www.bbc.co.uk/webwise/guides/internet-worms

BeaEngine. (2013, May). BeaEngine Sweet x86 x86-64 disassembler library. Retrieved

April 26, 2016, from BeaEngine Sweet:

http://beatrix2004.free.fr/BeaEngine/index1.php

Bright, P. (2015, August 26). How security flaws work: The buffer overflow. Retrieved

January 27, 2016, from http://arstechnica.com/security/2015/08/how-security-flaws-

work-the-buffer-overflow/

Brownlee, J. (2014, April 16). A Gentle Introduction to Scikit-Learn: A Python Machine

Learning Library. Retrieved from http://machinelearningmastery.com/a-gentle-

introduction-to-scikit-learn-a-python-machine-learning-library/

Buffer overflow. (2016, January). Retrieved March 13, 2016, from Wikipedia:

https://en.wikipedia.org/w/index.php?title=Buffer_overflow&oldid=737175721

Bulbapedia. (2016, March). Arbitrary Code Execution. Retrieved April 4, 2016, from

Bulbapedia: http://bulbapedia.bulbagarden.net/wiki/Arbitrary_code_execution

Burns, B., Killion, D., Beauchesne, N., Moret, E., Sobrier, J., Lynn, M., . . . Granick, J. a.

(2007). Secure Power Tools. O'REILLY.

Capstone. (2010, August). Capstone The Ultimate Disassembler. Retrieved April 28,

2016, from Capstone: http://www.capstone-engine.org

CLETteam. (2003). Polymorphic Shellcode Engine Using Spectrum Analysis. Retrieved

January 2, 2016, from Phrack Inc: http://phrack.org/issues/61/9.html

Computer Worm. (2016, January). Retrieved March 1, 2016, from Wikipedia, The Free

Encyclopedia.:

https://en.wikipedia.org/w/index.php?title=Computer_worm&oldid=741766263

Cournapeau, D. (2007). scikit-learn Machine Learning in Python. Retrieved May 13,

2016, from scikit-learn: http://scikit-learn.org/stable/

DuPaul, N. (2013, December 3). Static Testing vs. Dynamic Testing. Retrieved March 1,

2016, from Veracode: https://www.veracode.com/blog/2013/12/static-testing-vs-

dynamic-testing

www.manaraa.com

64

Fen, T., Fuchao, Y., Xiaobing, S., Xinchun, Y., & Bing, M. (2012, March 19). A New Data

Randomization Method to Defend Buffer Overflow Attacks. Paper Presented at

International Conference on Applied Physics and Industrial Engineering. 24(1), pp.

1757-1764. Nanjing ,China: ELSEVIER.

Gamayunov, D., Quan, N. T., Shakharov, F., & Toroshchin, E. (2009, Nov 10). Racewalk:

Fast Instruction Frequency Analysis and Classification for Shellcode Detection in

Network Flow. Paper Presented at Computer Network Defense (EC2ND). pp. 4-12.

Mosco, Russia: IEEE.

Gushin, Y. (2008). NIDS polymorphic evasion - The End? Retrieved April 20, 2016, from

ECL Labs: http://www.ecl-labs.org/papers/ecl-poly.txt

Han, J., & Kamber, M. (2005). Data Mining: Concepts and Techniques (2nd ed.). Peter

Kriegel, Germany: Morgan Kaufmann.

Hsu, F.-H., Guo, F., & Chiueh, T.-c. (2006, Dec. 5). Scalable network-based buffer

overflow attack detection. Paper Presented at ACM/IEEE Symposium on

Architectures for Networking and Communications Systems (pp. 163-172). New

York: IEEE.

Intel. (2003). IA-32 Interl Architecture Software Developer's Manual: Basic Architecture

(1st ed.). Calefornia, USA: Intel.

K2. (2001). a shellcode mutation engine. Retrieved March 2, 2016, from ADMmutate:

http://www.ktwo.ca/security.html

Khan, L., Thuraisingham, B., & Masud, M. (2011). Data Mining Tools for Malware

Detection. (1st ed.). Texas: CRC Press.

Khodaverdi, J., & Farnaz, A. (2013, September). A Robust Behavior Modeling for

Detecting Hard-coded Address Contained Shellcodes. International Journal of

Security and its Applications, 7(5), pp. 101-112.

Masud, M., Khan, L., Thuraisingham, B., Wang, X., Liu, P., & Zhu, S. (2008). Detecting

Remote Exploits Using Data Mining. Paper Presented at Digital Forensics Conference.

285, pp. 177-189. California: Springer US.

National Institute Of Standards and Technology. (2014). National Institute Of Standards

and Technology. Retrieved April 11, 2016, from National Vulnerability Database:

https://nvd.nist.gov/home.cfm

Pasupulati, A., Coit, J., Levitt, K., Wu, S. F., Li, S. H., Kuo, J. C., & Fan, K. P. (2004,

April 23). Buttercup: on network-based detection of polymorphic buffer overflow

vulnerabilities. Paper Presented at Network Operations and Management Symposium.

1, pp. 235-248. Seoul, South Korea: IEEE Xplore.

Polychronakis, M., Anagnostakis, K. G., & Markatos, E. P. (2006, July 13). Network–

Level Polymorphic Shellcode Detection Using Emulation. Detection of Intrusions and

Malware & Vulnerability Assessment DIMVA 2006, 4064(1), pp. 54-73.

www.manaraa.com

65

Rapid7. (2004). The Metasploit Project. Retrieved May 1, 2016, from Metasploit:

www.metasploit.org

Rapid7. (2013). The ultimate guide to the Metasploit Framework. Retrieved May 10, 2016,

from Metasploit Unleashed: https://www.offensive-security.com/metasploit-

unleashed/

SANS. (2002). IDFAQ: What is polymorphic shell code and what can it do? Retrieved

January 20, 2016, from The SANS Institute: https://www.sans.org/security-

resources/idfaq/what-is-polymorphic-shell-code-and-what-can-it-do/2/19

Shellcode. (2016). Retrieved March 9, 2016, from Wikipedia, The Free Encyclopedia.:

https://en.wikipedia.org/w/index.php?title=Shellcode&oldid=741414732

Silberman, P., & Johnson, R. (2004, Aug. 04). A Comparison of Buffer Overflow

Prevention Implementations and Weaknesses. New York: iDEFENSE Labs. Retrieved

February 2, 2016, from http://www.blackhat.com/presentations/bh-usa-04/bh-us-04-

silberman/bh-us-04-silberman-paper.pdf

SNORT. (2016). Snort, the open-source network intrusion detection system. Retrieved

August 28, 2016, from SNORT: www.snort.org

Song, Y., Locasto, M. E., Stavrou, A., Keromytis, A. D., & Stolfo, S. J. (2009, October

29). On the infeasibility of modeling polymorphic shellcode Re-thinking the role of

learning in intrusion detection systems. Machine Learning, 81(2), pp. 179-205.

Spafford, E. H. (1988). The Internet Worm Program: An Analysis. Indiana: Purdue

University. Retrieved March 17, 2016, from

http://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1701&context=cstech

Sphinx. (2009). Natural Language Toolkit Documentation. Retrieved May 14, 2016, from

Natural Language Toolkit: http://www.nltk.org

Symantec. (2016). What is a Zero-Day Vulnerability? Retrieved April 7, 2016, from

PCTOOLS: http://www.pctools.com/security-news/zero-day-vulnerability/

Vento, D. D. (2016). What is the difference between supervised learning and Unspervised

learning. Retrieved August 20, 2016, from Stackoverflow:

http://stackoverflow.com/questions/1832076/what-is-the-difference-between-superv

Wang, W., Wang, H., Luo, D., & Fang, Y. (2007, October 16). Online Detect Polymorphic

Exploit Based on Data Mining. Paper Presented at International Conference on

Intelligent Systems and Knowledge Engineering (pp. 1435-1442). Chengdu,China:

ISKE.

Wicherski, G., Cesare, S., & Carrera, E. (2016, May). disassembly library. Retrieved May

1, 2016, from Google Code: https://code.google.com/archive/p/libdasm/

Younan, Y. (2013). 25 Years of Vulnerabilityies: 1988- 2012. Retrieved May 5, 2016,

from Sourcefire Vulnerability Research Team (VRTTM):

www.manaraa.com

66

https://labs.snort.org/blogfiles/Sourcefire-25-Years-of-Vulnerabilities-Research-

Report.pdf

Yuan, J., & Ding, S. (2011, May 29). A Method for detecting buffer Overflow

Vulnerabilities. Paper Presented at 3rd IEEE International Conference on

Communication Software and Networks (pp. 188-192). Xi'an, China: IEEE.

Zaïane, O. R. (1999). Principles of Knowledge Discovery in Databases. Retrieved June 4,

2016, from https://webdocs.cs.ualberta.ca/~zaiane/courses/cmput690/

Zhao, Z., & Ahn, G.-J. (2013, Oct. 16). Using instruction sequence abstraction for

shellcode detection and attribution. Paper Presented at 1st IEEE International

Conference on Communications and Network Security, CNS 2013 (pp. 323-331).

Washington, DC, United States: IEEE Computer Society.

www.manaraa.com

Appendix (1)

www.manaraa.com

68

www.manaraa.com

69

www.manaraa.com

70

